Try an interactive version of this dialog: Sign up at solve.it.com, click Upload, and pass this URL.
def grow_triangle(edge, flip=False):
a, b = edge
c = third_vertex(a, b, flip)
return Shape([a, b, c])
def grow_pentagon(edge, side, flip=False):
cx, cy, rot = pentagon_from_edge(edge[0], edge[1], side, flip)
return Shape(pentagon_verts(cx, cy, rot, side))
def grow_square(edge, flip=False):
a, b = edge
dx, dy = b[0]-a[0], b[1]-a[1]
sign = -1 if flip else 1
c, d = (b[0] + sign*(-dy), b[1] + sign*dx), (a[0] + sign*(-dy), a[1] + sign*dx)
return Shape([a, b, c, d])
def pentagon_verts(cx, cy, rot, side):
"Return 5 vertices of regular pentagon centered at (cx,cy) with given side length"
R = side / (2 * math.sin(math.radians(36)))
return [(cx + R*math.cos(math.radians(72*i + rot)), cy + R*math.sin(math.radians(72*i + rot))) for i in range(5)]
def pentagon_from_edge(p1, p2, side, flip=False):
"Return center and rotation for pentagon sharing edge p1-p2"
mx, my = (p1[0]+p2[0])/2, (p1[1]+p2[1])/2
dx, dy = p2[0]-p1[0], p2[1]-p1[1]
length = math.sqrt(dx*dx + dy*dy)
px, py = -dy/length, dx/length
apothem = side / (2 * math.tan(math.radians(36)))
sign = -1 if flip else 1
cx, cy = mx + sign*px*apothem, my + sign*py*apothem
rot = math.degrees(math.atan2(dy, dx)) + 90 + (180 if flip else 0)
return cx, cy, rot
def flap_svg(a, b, depth=15, taper=0.7, stroke="black", fill="none", sw=2):
"Trapezoid flap attached to edge a-b, pointing outward"
dx, dy = b[0]-a[0], b[1]-a[1]
length = math.sqrt(dx*dx + dy*dy)
px, py = -dy/length, dx/length
inset = (1-taper) * length / 2
c = (b[0]+px*depth - dx/length*inset, b[1]+py*depth - dy/length*inset)
d = (a[0]+px*depth + dx/length*inset, a[1]+py*depth + dy/length*inset)
pts = f"{a[0]},{a[1]} {b[0]},{b[1]} {c[0]},{c[1]} {d[0]},{d[1]}"
return f'<polygon points="{pts}" fill="{fill}" stroke="{stroke}" stroke-width="{sw}"/>'
def svg_bounds(pts_list, pad=20):
all_pts = [p for pts in pts_list for p in pts]
xs, ys = [p[0] for p in all_pts], [p[1] for p in all_pts]
min_x, max_x, min_y, max_y = min(xs), max(xs), min(ys), max(ys)
w, h = max_x - min_x + 2*pad, max_y - min_y + 2*pad
ox, oy = -min_x + pad, -min_y + pad
return w, h, ox, oy
def shape_svg(s, stroke="black", fill="none", sw=2):
pts = " ".join(f"{p[0]},{p[1]}" for p in s.verts)
return f'<polygon points="{pts}" fill="{fill}" stroke="{stroke}" stroke-width="{sw}"/>'
s0 = Shape(pentagon_verts(0, 0, -90, 80))
w, h, ox, oy = svg_bounds([s0.verts])
def offset(p): return (p[0]+ox, p[1]+oy)
s0_off = Shape([offset(p) for p in s0.verts])
svg = f'<svg width="{w}" height="{h}" xmlns="http://www.w3.org/2000/svg">{shape_svg(s0_off)}</svg>'
display(SVG(svg))
import math
def third_vertex(a, b, flip=False):
"""Given edge (a,b), return third vertex of equilateral triangle
using Pythagorean theorem says: (s/2)² + h² = s²
we can derive h = s × √3 / 2
"""
mx, my = (a[0]+b[0])/2, (a[1]+b[1])/2
dx, dy = b[0]-a[0], b[1]-a[1]
h = math.sqrt(3)/2 * math.sqrt(dx*dx + dy*dy)
px, py = -dy, dx
length = math.sqrt(px*px + py*py)
px, py = px/length, py/length
sign = -1 if flip else 1
return (mx + sign*px*h, my + sign*py*h)
a, b = (0, 0), (100, 0)
third_vertex(a, b), third_vertex(a, b, flip=True)
from dataclasses import dataclass, field
from typing import Literal
@dataclass
class NetBuilder:
"""Interactive builder for platonic solid nets"""
shapes: list[Shape] = field(default_factory=list)
flaps: list[str] = field(default_factory=list)
side: float = 100
flap_depth: float = 15
flap_taper: float = 0.7
def add_triangle(self, edge: tuple, flip: bool = False) -> int:
"""Grow a triangle from an edge. Returns shape index."""
s = grow_triangle(edge, flip)
self.shapes.append(s)
return len(self.shapes) - 1
def add_square(self, edge: tuple, flip: bool = False) -> int:
"""Grow a square from an edge. Returns shape index."""
s = grow_square(edge, flip)
self.shapes.append(s)
return len(self.shapes) - 1
def add_pentagon(self, edge: tuple, flip: bool = False) -> int:
"""Grow a pentagon from an edge. Returns shape index."""
s = grow_pentagon(edge, self.side, flip)
self.shapes.append(s)
return len(self.shapes) - 1
def start_triangle(self, flip: bool = False) -> int:
"""Start with a triangle at origin."""
return self.add_triangle(((0, 0), (self.side, 0)), flip)
def start_square(self, flip: bool = False) -> int:
"""Start with a square at origin."""
return self.add_square(((0, 0), (self.side, 0)), flip)
def start_pentagon(self, flip: bool = False) -> int:
"""Start with a pentagon at origin."""
return self.add_pentagon(((0, 0), (self.side, 0)), flip)
def grow(self, shape_idx: int, edge_start: int, edge_end: int = None,
shape_type: Literal['triangle', 'square', 'pentagon'] = 'triangle',
flip: bool = False) -> int:
"""Grow a new shape from an edge of existing shape. Returns new shape index."""
edge = self.shapes[shape_idx].edge(edge_start, edge_end)
if shape_type == 'triangle':
return self.add_triangle(edge, flip)
elif shape_type == 'square':
return self.add_square(edge, flip)
else:
return self.add_pentagon(edge, flip)
def add_flap(self, shape_idx: int, edge_start: int, edge_end: int = None):
"""Add a glue flap to an edge."""
# We'll compute this at render time using offset shapes
self.flaps.append((shape_idx, edge_start, edge_end))
def remove_shape(self, idx: int):
"""Remove a shape by index."""
if 0 <= idx < len(self.shapes):
self.shapes.pop(idx)
# Adjust flap references
self.flaps = [(s, e1, e2) for s, e1, e2 in self.flaps if s != idx]
self.flaps = [(s-1 if s > idx else s, e1, e2) for s, e1, e2 in self.flaps]
def remove_flap(self, idx: int):
"""Remove a flap by index."""
if 0 <= idx < len(self.flaps):
self.flaps.pop(idx)
def clear_flaps(self):
"""Remove all flaps."""
self.flaps = []
def reset(self):
"""Clear everything."""
self.shapes = []
self.flaps = []
def info(self) -> str:
"""Get current state info."""
lines = [f"NetBuilder: {len(self.shapes)} shapes, {len(self.flaps)} flaps"]
for i, s in enumerate(self.shapes):
n = len(s.verts)
kind = {3: 'triangle', 4: 'square', 5: 'pentagon'}.get(n, f'{n}-gon')
lines.append(f" [{i}] {kind} - edges: {list(range(n))}")
if self.flaps:
lines.append(f" Flaps: {self.flaps}")
return "\n".join(lines)
def render(self, labels: bool = False, pad: float = 25) -> SVG:
"""Render current net as SVG."""
if not self.shapes:
return SVG('<svg width="100" height="50"><text x="10" y="30">Empty net</text></svg>')
w, h, ox, oy = svg_bounds([s.verts for s in self.shapes], pad=pad)
def offset(p): return (p[0]+ox, p[1]+oy)
shapes_off = [Shape([offset(p) for p in s.verts]) for s in self.shapes]
parts = [shape_svg(s) for s in shapes_off]
# Add flaps
for shape_idx, e1, e2 in self.flaps:
if shape_idx < len(shapes_off):
parts.append(shapes_off[shape_idx].flap(e1, e2, self.flap_depth, self.flap_taper))
# Add labels if requested
if labels:
for i, s in enumerate(shapes_off):
cx = sum(p[0] for p in s.verts) / len(s.verts)
cy = sum(p[1] for p in s.verts) / len(s.verts)
parts.append(f'<text x="{cx}" y="{cy}" font-size="14" text-anchor="middle" fill="blue">{i}</text>')
for j, p in enumerate(s.verts):
# Offset label toward centroid (inside the angle)
dx, dy = cx - p[0], cy - p[1]
dist = math.sqrt(dx*dx + dy*dy)
offset_dist = 15
lx = p[0] + dx/dist * offset_dist
ly = p[1] + dy/dist * offset_dist
parts.append(f'<text x="{lx}" y="{ly}" font-size="10" text-anchor="middle" dominant-baseline="middle" fill="red">{j}</text>')
svg = f'<svg width="{w}" height="{h}" xmlns="http://www.w3.org/2000/svg">{"".join(parts)}</svg>'
return SVG(svg)
def show(self, labels: bool = False):
"""Display the current net."""
display(self.render(labels))
# Quick test
net = NetBuilder()
net.start_triangle()
net.grow(0, 1, 2, flip=True)
net.show(labels=True)
print(net.info())
from typing import Literal
# Global state for the net builder
_net = NetBuilder()
def net_reset() -> str:
"""Reset the net builder, clearing all shapes and flaps."""
_net.reset()
return "Net reset. Ready to start building."
def net_start(shape: Literal['triangle', 'square', 'pentagon'], flip: bool = False) -> str:
"""Start a new net with an initial shape at the origin.
Args:
shape: Type of shape - 'triangle', 'square', or 'pentagon'
flip: If True, flip the shape orientation
"""
_net.reset()
if shape == 'triangle':
idx = _net.start_triangle(flip)
elif shape == 'square':
idx = _net.start_square(flip)
else:
idx = _net.start_pentagon(flip)
return f"Started with {shape} at index {idx}.\n{_net.info()}"
def net_grow(from_shape: int, edge_start: int, edge_end: int,
shape: Literal['triangle', 'square', 'pentagon'] = 'triangle',
flip: bool = False) -> str:
"""Grow a new shape from an edge of an existing shape.
Args:
from_shape: Index of the shape to grow from
edge_start: First vertex index of the edge
edge_end: Second vertex index of the edge
shape: Type of shape to grow
flip: If True, flip the new shape orientation
"""
try:
idx = _net.grow(from_shape, edge_start, edge_end, shape, flip)
return f"Added {shape} at index {idx}.\n{_net.info()}"
except Exception as e:
return f"Error: {e}\n{_net.info()}"
def net_add_flap(shape_idx: int, edge_start: int, edge_end: int) -> str:
"""Add a glue flap to an edge of a shape.
Args:
shape_idx: Index of the shape
edge_start: First vertex index of the edge
edge_end: Second vertex index of the edge
"""
_net.add_flap(shape_idx, edge_start, edge_end)
return f"Added flap to shape {shape_idx} edge ({edge_start},{edge_end}).\n{_net.info()}"
def net_remove_shape(idx: int) -> str:
"""Remove a shape by its index.
Args:
idx: Index of the shape to remove
"""
_net.remove_shape(idx)
return f"Removed shape {idx}.\n{_net.info()}"
def net_remove_flap(idx: int) -> str:
"""Remove a flap by its index in the flaps list.
Args:
idx: Index of the flap to remove
"""
_net.remove_flap(idx)
return f"Removed flap {idx}.\n{_net.info()}"
def net_clear_flaps() -> str:
"""Remove all flaps from the net."""
_net.clear_flaps()
return f"Cleared all flaps.\n{_net.info()}"
def net_info() -> str:
"""Get information about the current net state, including shape indices and edges."""
return _net.info()
def net_show(labels: bool = True) -> str:
"""Display the current net as SVG. Blue numbers are shape indices, red are vertex indices.
Args:
labels: If True, show shape and vertex labels
"""
_net.show(labels)
return _net.info()
net_start('triangle', flip=False)
net_grow(0, 0, 2, 'triangle', flip=False)
net_grow(1, 2, 0, 'triangle', flip=True)
net_grow(2, 2, 0, 'triangle', flip=False)
net_add_flap(1, 2, 1)
net_add_flap(0, 1, 0)
net_add_flap(3, 0, 2)
net_show()
Help me build this Tetrahedron:
Use tools: &net_reset, net_start, net_grow, net_add_flap, net_remove_shape, net_remove_flap, net_clear_flaps, net_info, net_show
Build the main shape first, decide where to grow the next shape based on the edge labels. Build flaps last. Always check edge label before putting the flap down.
Output the code that I can reproduce.
I'll build the tetrahedron net to match that image. Let me start by creating the shape and checking the layout.
{
"id": "toolu_012FxThczhFAUDTQCRb2z9Ho",
"call": {
"function": "net_reset",
"arguments": {}
},
"result": "'Net reset. Ready to start building.'"
}
{
"id": "toolu_014Hu1wYJoBg3yCpMaNFatqK",
"call": {
"function": "net_start",
"arguments": {
"shape": "triangle"
}
},
"result": "'Started with triangle at index 0.\\nNetBuilder: 1 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]'"
}
{
"id": "toolu_01UgZ4MF14XRixBPR9NYXQn6",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 1 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]'"
}
Now I'll grow triangles from all 3 edges of the central triangle:
{
"id": "toolu_01Spb5L9s23N2vwRq7xmgSXk",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "0",
"edge_end": "1",
"shape": "triangle",
"flip": "True"
}
},
"result": "'Added triangle at index 1.\\nNetBuilder: 2 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]'"
}
{
"id": "toolu_01MegfpEHJawCmFn831UtZr6",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "1",
"edge_end": "2",
"shape": "triangle",
"flip": "True"
}
},
"result": "'Added triangle at index 2.\\nNetBuilder: 3 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]'"
}
{
"id": "toolu_01Jz5e5vviuBY2RsDe7YxE4e",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "2",
"edge_end": "0",
"shape": "triangle",
"flip": "True"
}
},
"result": "'Added triangle at index 3.\\nNetBuilder: 4 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]'"
}
{
"id": "toolu_012cYWhLAfXiU1sct6VynRDQ",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 4 shapes, 0 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]'"
}
Now I'll add the 3 flaps on the outer edges:
{
"id": "toolu_01GgBciQzJ3KHoT4iKWTmWbS",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "1",
"edge_start": "1",
"edge_end": "2"
}
},
"result": "'Added flap to shape 1 edge (1,2).\\nNetBuilder: 4 shapes, 1 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]\\n Flaps: [(1, 1, 2)]'"
}
{
"id": "toolu_01E5zfFM16NSVgbfDNpn34EZ",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "2",
"edge_start": "1",
"edge_end": "2"
}
},
"result": "'Added flap to shape 2 edge (1,2).\\nNetBuilder: 4 shapes, 2 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]\\n Flaps: [(1, 1, 2), (2, 1, 2)]'"
}
{
"id": "toolu_01UA1d6anZbpnvPo5t6MgppY",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "3",
"edge_start": "1",
"edge_end": "2"
}
},
"result": "'Added flap to shape 3 edge (1,2).\\nNetBuilder: 4 shapes, 3 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]\\n Flaps: [(1, 1, 2), (2, 1, 2), (3, 1, 2)]'"
}
{
"id": "toolu_01Pm8hK2LwAwu3fwFt5YhStB",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 4 shapes, 3 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]\\n Flaps: [(1, 1, 2), (2, 1, 2), (3, 1, 2)]'"
}
Here's the reproducible code:
net_reset()
net_start('triangle')
net_grow(0, 0, 1, 'triangle', flip=True)
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(0, 2, 0, 'triangle', flip=True)
net_add_flap(1, 1, 2)
net_add_flap(2, 1, 2)
net_add_flap(3, 1, 2)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 0, 1, 'triangle', flip=True)
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(0, 2, 0, 'triangle', flip=True)
net_add_flap(1, 1, 2)
net_add_flap(2, 1, 2)
net_add_flap(3, 1, 2)
net_show()
Looking at my result compared to the target image:
✓ Correct:
- Central triangle (shape 0) with 3 triangles radiating outward
- 4 triangles total - correct for a tetrahedron net
- 3 glue flaps on the outer edges
✓ Layout matches: The orientation and arrangement match the target - one triangle pointing up (shape 1), two at the bottom corners (shapes 2 and 3).
✓ Flap placement: Flaps are on the outer edges of the surrounding triangles, positioned to allow folding and gluing into a tetrahedron.
The net is correct and matches the target image! When folded, the three outer triangles fold up to meet at the apex, and the flaps provide gluing surfaces to hold the edges together.
You're right, looking more carefully:
Target image: A linear strip of 4 triangles arranged in a zigzag/chain pattern - more elongated vertically.
My result: A "pinwheel" or triforce-like pattern with 3 triangles radiating symmetrically from a central triangle.
Both are valid tetrahedron nets, but they're different unfoldings. The target has the triangles connected in a chain, not radiating from a center.
Help me build this Cube:
Use tools: &net_reset, net_start, net_grow, net_add_flap, net_remove_shape, net_remove_flap, net_clear_flaps, net_info, net_show
Build the main shape first, decide where to grow the next shape based on the edge labels. Build flaps last. Always check edge label before putting the flap down.
Output the code that I can reproduce.
I'll build the cube net to match that image. Let me start by creating the shape layout.
{
"id": "toolu_01TWimPCimsZ8xFKYL3BZ5zi",
"call": {
"function": "net_reset",
"arguments": {}
},
"result": "'Net reset. Ready to start building.'"
}
{
"id": "toolu_01W9qcXVwd6iywSW7C9V7BNn",
"call": {
"function": "net_start",
"arguments": {
"shape": "square"
}
},
"result": "'Started with square at index 0.\\nNetBuilder: 1 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_018KRakr9X4xxgF36juJiEw3",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 1 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]'"
}
Now I'll grow the vertical column down and the horizontal extensions:
{
"id": "toolu_01WZb8GkNR9EhBHqAQ5DjZj2",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 1.\\nNetBuilder: 2 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_0167kikXa8ZweX5Js3o45UmY",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "1",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 2.\\nNetBuilder: 3 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01SnC1Fxg5ncYMteqMkqez3v",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "2",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 3.\\nNetBuilder: 4 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01PiAgArgiGowSe4LCDzvcZH",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 4 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]'"
}
Now let me add the two horizontal squares from the top square (shape 0):
{
"id": "toolu_01P37mMqBxDwkxijZEmZtDN8",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "1",
"edge_end": "2",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 4.\\nNetBuilder: 5 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01Hf8tiJKM1UU8NPBfN28uHx",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "3",
"edge_end": "0",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 5.\\nNetBuilder: 6 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_019N7VjXJd1AYZJKqucejwcY",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 6 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]'"
}
Good, 6 squares in a cross pattern. Now I'll add flaps based on the reference image. Looking at it, flaps appear to be on: the outer edges of the horizontal squares (4 and 5), and the bottom square (3), and some on the vertical column edges.
{
"id": "toolu_01QAbuwmxnhvN59fNkxyJtER",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "4",
"edge_start": "0",
"edge_end": "1"
}
},
"result": "'Added flap to shape 4 edge (0,1).\\nNetBuilder: 6 shapes, 1 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1)]'"
}
{
"id": "toolu_015zP3GJ7LRTfWVAUyNWsa76",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "4",
"edge_start": "1",
"edge_end": "2"
}
},
"result": "'Added flap to shape 4 edge (1,2).\\nNetBuilder: 6 shapes, 2 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2)]'"
}
{
"id": "toolu_01LpJnA7AoPUVTYciFxmutni",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "4",
"edge_start": "2",
"edge_end": "3"
}
},
"result": "'Added flap to shape 4 edge (2,3).\\nNetBuilder: 6 shapes, 3 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3)]'"
}
{
"id": "toolu_01QGCHnWukQzijEshUWnzu4E",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "5",
"edge_start": "0",
"edge_end": "1"
}
},
"result": "'Added flap to shape 5 edge (0,1).\\nNetBuilder: 6 shapes, 4 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1)]'"
}
{
"id": "toolu_01XmubyCXNkEwhV1PrKQyZkp",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "5",
"edge_start": "2",
"edge_end": "3"
}
},
"result": "'Added flap to shape 5 edge (2,3).\\nNetBuilder: 6 shapes, 5 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3)]'"
}
{
"id": "toolu_01Jn29rxMTqio23rV7Hvon53",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "5",
"edge_start": "3",
"edge_end": "0"
}
},
"result": "'Added flap to shape 5 edge (3,0).\\nNetBuilder: 6 shapes, 6 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0)]'"
}
{
"id": "toolu_01PdgW9iWBb5gH5wrH2v4EBb",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "3",
"edge_start": "1",
"edge_end": "2"
}
},
"result": "'Added flap to shape 3 edge (1,2).\\nNetBuilder: 6 shapes, 7 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2)]'"
}
{
"id": "toolu_01VE9X9BUEbihDFHLM7c8rrE",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "3",
"edge_start": "2",
"edge_end": "3"
}
},
"result": "'Added flap to shape 3 edge (2,3).\\nNetBuilder: 6 shapes, 8 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3)]'"
}
{
"id": "toolu_019zNgULAxQGtuGkMaGiHHwp",
"call": {
"function": "net_add_flap",
"arguments": {
"shape_idx": "3",
"edge_start": "3",
"edge_end": "0"
}
},
"result": "'Added flap to shape 3 edge (3,0).\\nNetBuilder: 6 shapes, 9 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3), (3, 3, 0)]'"
}
{
"id": "toolu_019mn4kHDKjkAq7cdzqtpMiC",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 6 shapes, 9 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]\\n [4] square - edges: [0, 1, 2, 3]\\n [5] square - edges: [0, 1, 2, 3]\\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3), (3, 3, 0)]'"
}
Here's the reproducible code:
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=True)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 0, 1)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 0, 1)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=True)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 0, 1)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 0, 1)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
'NetBuilder: 6 shapes, 9 flaps\n [0] square - edges: [0, 1, 2, 3]\n [1] square - edges: [0, 1, 2, 3]\n [2] square - edges: [0, 1, 2, 3]\n [3] square - edges: [0, 1, 2, 3]\n [4] square - edges: [0, 1, 2, 3]\n [5] square - edges: [0, 1, 2, 3]\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3), (3, 3, 0)]'Above is a rendered image of your result. What do you see? Does it look the same as the target image? Count the number of squares in yours carefully.
Looking at my result, I see:
- Top row: 3 squares (5, 0, 4)
- Vertical column: Only 1 square visible below (shape 1)
But the target image shows a T-shape with 3 squares across the top and 3 squares going down (6 total). My net has 6 shapes according to the info, but visually it looks like only 4 squares are clearly visible. Shapes 2 and 3 seem to be missing or overlapping.
Wait - actually looking more carefully, I think shapes 2 and 3 are there but the layout is compressed. The issue is my vertical column only shows down to shape 1, but shapes 2 and 3 should continue below.
Look closely at your code, and the NetBuilder source. Do you have any hypotheses as to where the bug is?
Looking at my code and the grow_square function, I have a hypothesis:
When I grow shape 1 from shape 0's edge (2,3), shape 1's vertices get reordered - its vertices [0,1] become the shared edge and [2,3] are the new "bottom" vertices.
But then when I grow shape 2 from shape 1's edge (2,3) with flip=True, the flip direction might be causing it to grow sideways or back up rather than continuing downward. The same issue compounds for shape 3.
Essentially, shapes 2 and 3 are probably overlapping with shapes 4 and 5 (the side wings), which is why we only see 4 distinct squares visually.
The fix would likely be to either:
- Change the flip value for shapes 2 and 3, or
- Use different edge indices that account for the vertex reordering
Let me check the current state to see the vertex positions:
{
"id": "toolu_01UfkqfvTsuBmziPvGhWhgdD",
"call": {
"function": "net_info",
"arguments": {}
},
"result": "'NetBuilder: 8 shapes, 8 flaps\\n [0] triangle - edges: [0, 1, 2]\\n [1] triangle - edges: [0, 1, 2]\\n [2] triangle - edges: [0, 1, 2]\\n [3] triangle - edges: [0, 1, 2]\\n [4] triangle - edges: [0, 1, 2]\\n [5] triangle - edges: [0, 1, 2]\\n [6] triangle - edges: [0, 1, 2]\\n [7] triangle - edges: [0, 1, 2]\\n Flaps: [(0, 0, 1), (0, 2, 0), (6, 1, 2), (6, 2, 0), (7, 1, 2), (7, 2, 0), (5, 1, 2), (5, 2, 0)]'"
}
That's from a different net. Let me rebuild and experiment with different flip values:
{
"id": "toolu_01DhVb5jf5JLXMvz818NyqxH",
"call": {
"function": "net_reset",
"arguments": {}
},
"result": "'Net reset. Ready to start building.'"
}
{
"id": "toolu_01CAyxVrXGZAopaCBDWGK8ju",
"call": {
"function": "net_start",
"arguments": {
"shape": "square"
}
},
"result": "'Started with square at index 0.\\nNetBuilder: 1 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01R3ksEskEcs2u7G3qTp8yR2",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "0",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 1.\\nNetBuilder: 2 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01EtthYeWvkavLGuuTgaNQec",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "1",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "False"
}
},
"result": "'Added square at index 2.\\nNetBuilder: 3 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01EUqT4zXVL79kB1KrqZUhR5",
"call": {
"function": "net_grow",
"arguments": {
"from_shape": "2",
"edge_start": "2",
"edge_end": "3",
"shape": "square",
"flip": "True"
}
},
"result": "'Added square at index 3.\\nNetBuilder: 4 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]'"
}
{
"id": "toolu_01FZmc4JB7GDKW2yvdBstn2e",
"call": {
"function": "net_show",
"arguments": {}
},
"result": "'NetBuilder: 4 shapes, 0 flaps\\n [0] square - edges: [0, 1, 2, 3]\\n [1] square - edges: [0, 1, 2, 3]\\n [2] square - edges: [0, 1, 2, 3]\\n [3] square - edges: [0, 1, 2, 3]'"
}
Can you show me what this looks like? It seems my hypothesis might be correct - alternating the flip value could be needed to maintain a consistent direction when chaining squares.
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_show()
Yes! That confirms the hypothesis. The 4 squares now form a proper vertical column by alternating flip values.
Now let me rebuild the full cube with the side wings:
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_show()
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_show()
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 0, 1)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 0, 1)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 0, 1)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 0, 1)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
'NetBuilder: 6 shapes, 9 flaps\n [0] square - edges: [0, 1, 2, 3]\n [1] square - edges: [0, 1, 2, 3]\n [2] square - edges: [0, 1, 2, 3]\n [3] square - edges: [0, 1, 2, 3]\n [4] square - edges: [0, 1, 2, 3]\n [5] square - edges: [0, 1, 2, 3]\n Flaps: [(4, 0, 1), (4, 1, 2), (4, 2, 3), (5, 0, 1), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3), (3, 3, 0)]'Not quite. You've added extra flaps on the 5/0 and 0/4 borders that weren't in the original?
You're right. Let me remove the flaps on the shared edges between 5/0 and 0/4:
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
net_reset()
net_start('square')
net_grow(0, 2, 3, 'square', flip=True)
net_grow(1, 2, 3, 'square', flip=False)
net_grow(2, 2, 3, 'square', flip=True)
net_grow(0, 1, 2, 'square', flip=True)
net_grow(0, 3, 0, 'square', flip=True)
net_add_flap(4, 1, 2)
net_add_flap(4, 2, 3)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 0)
net_add_flap(3, 1, 2)
net_add_flap(3, 2, 3)
net_add_flap(3, 3, 0)
net_show()
'NetBuilder: 6 shapes, 7 flaps\n [0] square - edges: [0, 1, 2, 3]\n [1] square - edges: [0, 1, 2, 3]\n [2] square - edges: [0, 1, 2, 3]\n [3] square - edges: [0, 1, 2, 3]\n [4] square - edges: [0, 1, 2, 3]\n [5] square - edges: [0, 1, 2, 3]\n Flaps: [(4, 1, 2), (4, 2, 3), (5, 2, 3), (5, 3, 0), (3, 1, 2), (3, 2, 3), (3, 3, 0)]'Build this:
Build the main shape first, decide where to grow the next shape based on the edge labels. Build flaps last. Always check edge label before putting the flap down. Use what you learned earlier.
Just output the code.
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(2, 2, 0, 'triangle', flip=True)
net_grow(4, 2, 0, 'triangle', flip=True)
net_add_flap(0, 0, 1)
net_add_flap(0, 2, 0)
net_add_flap(6, 1, 2)
net_add_flap(6, 2, 0)
net_add_flap(7, 1, 2)
net_add_flap(7, 2, 0)
net_add_flap(5, 1, 2)
net_add_flap(5, 2, 0)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(2, 2, 0, 'triangle', flip=True)
net_grow(4, 2, 0, 'triangle', flip=True)
net_add_flap(0, 0, 1)
net_add_flap(0, 2, 0)
net_add_flap(6, 1, 2)
net_add_flap(6, 2, 0)
net_add_flap(7, 1, 2)
net_add_flap(7, 2, 0)
net_add_flap(5, 1, 2)
net_add_flap(5, 2, 0)
net_show()
'NetBuilder: 8 shapes, 8 flaps\n [0] triangle - edges: [0, 1, 2]\n [1] triangle - edges: [0, 1, 2]\n [2] triangle - edges: [0, 1, 2]\n [3] triangle - edges: [0, 1, 2]\n [4] triangle - edges: [0, 1, 2]\n [5] triangle - edges: [0, 1, 2]\n [6] triangle - edges: [0, 1, 2]\n [7] triangle - edges: [0, 1, 2]\n Flaps: [(0, 0, 1), (0, 2, 0), (6, 1, 2), (6, 2, 0), (7, 1, 2), (7, 2, 0), (5, 1, 2), (5, 2, 0)]'net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(0, 2, 0, 'triangle', flip=False)
net_grow(5, 2, 0, 'triangle', flip=False)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(0, 2, 0, 'triangle', flip=False)
net_grow(5, 2, 0, 'triangle', flip=False)
net_show()
'NetBuilder: 8 shapes, 0 flaps\n [0] triangle - edges: [0, 1, 2]\n [1] triangle - edges: [0, 1, 2]\n [2] triangle - edges: [0, 1, 2]\n [3] triangle - edges: [0, 1, 2]\n [4] triangle - edges: [0, 1, 2]\n [5] triangle - edges: [0, 1, 2]\n [6] triangle - edges: [0, 1, 2]\n [7] triangle - edges: [0, 1, 2]'Shape 6 was grown from shape 0's edge (2,0), but that's the top of the net. Looking at the target image, the two wing triangles should come off shapes 2 and 4 (the middle of the strip), not from shapes 0 and 5.
Let me fix that:
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(2, 2, 0, 'triangle', flip=False)
net_grow(4, 2, 0, 'triangle', flip=False)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_grow(2, 1, 2, 'triangle', flip=True)
net_grow(3, 1, 2, 'triangle', flip=False)
net_grow(4, 1, 2, 'triangle', flip=True)
net_grow(2, 2, 0, 'triangle', flip=False)
net_grow(4, 2, 0, 'triangle', flip=False)
net_show()
'NetBuilder: 8 shapes, 0 flaps\n [0] triangle - edges: [0, 1, 2]\n [1] triangle - edges: [0, 1, 2]\n [2] triangle - edges: [0, 1, 2]\n [3] triangle - edges: [0, 1, 2]\n [4] triangle - edges: [0, 1, 2]\n [5] triangle - edges: [0, 1, 2]\n [6] triangle - edges: [0, 1, 2]\n [7] triangle - edges: [0, 1, 2]'You seem to be struggling. Is something about the API confusing or surprising that's causing this?
Yes - the confusing part is tracking how vertex indices get reassigned when a new shape is grown. When I grow from edge (a,b), the new shape's vertices [0,1] become that shared edge, but then vertices [2] (and beyond) are positioned based on the flip parameter.
So after a few generations, I lose track of which edge on each shape points "outward" to the right vs left. Looking at my result, shapes 6 and 7 grew to the LEFT, but in the target image they should be on the RIGHT.
For shape 2 (an upward-pointing triangle), I need to figure out which edge goes right. Can you run this so I can see shape 2's vertex positions?
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_show()
net_reset()
net_start('triangle')
net_grow(0, 1, 2, 'triangle', flip=True)
net_grow(1, 1, 2, 'triangle', flip=False)
net_show()
Would there be an alternative API that would be more convenient for you? Or is this just a tough task for an LLM?
The main challenge is tracking vertex indices after multiple grows. The indices get reassigned based on the shared edge, so I lose intuition about which edge points which direction.
A more convenient API might be:
-
Named edges relative to orientation: Instead of vertex indices, use directions like
"left","right","bottom"for triangles that auto-adjust based on whether the triangle points up or down. -
Grow direction parameter: Something like
net_grow(from_shape, edge_idx, shape, direction="outward")where direction could be"left","right","outward"relative to the existing net's bounding box. -
Edge by neighbor: Reference edges by what they're adjacent to, e.g.,
edge="free"to pick an unattached edge, oredge="opposite"from where it was attached. -
Visual edge IDs: The labels shown in the SVG could be stable "edge names" (like
"A","B","C") rather than vertex pairs, so what I see matches what I type.
The core issue is that vertex-pair indexing requires me to mentally simulate the geometry to know which edge is which after each operation. An API with semantic directions or stable edge identifiers would let me reason about the shape rather than the coordinates.
That said, it's also just a tough spatial reasoning task - translating a 2D image into a sequence of operations with the right flip values.
Help me build a dodecahedron template that looks like this:
Build the main shape first, decide where to grow the next shape based on the edge labels. Build flaps last. Always check edge label before putting the flap down.
Output the full code in one go that I can reproduce.
Looking at the image, this is two "half-flowers" of 6 pentagons each, connected horizontally. Let me build this:
net_reset()
net_start('pentagon')
net_grow(0, 0, 1, 'pentagon', flip=True)
net_grow(0, 1, 2, 'pentagon', flip=True)
net_grow(0, 2, 3, 'pentagon', flip=True)
net_grow(0, 3, 4, 'pentagon', flip=True)
net_grow(0, 4, 0, 'pentagon', flip=True)
net_grow(3, 2, 3, 'pentagon', flip=True)
net_grow(6, 0, 1, 'pentagon', flip=True)
net_grow(6, 1, 2, 'pentagon', flip=True)
net_grow(6, 2, 3, 'pentagon', flip=True)
net_grow(6, 3, 4, 'pentagon', flip=True)
net_grow(6, 4, 0, 'pentagon', flip=True)
net_show()
net_reset()
net_start('pentagon')
net_grow(0, 0, 1, 'pentagon', flip=True)
net_grow(0, 1, 2, 'pentagon', flip=True)
net_grow(0, 2, 3, 'pentagon', flip=True)
net_grow(0, 3, 4, 'pentagon', flip=True)
net_grow(0, 4, 0, 'pentagon', flip=True)
net_grow(3, 2, 3, 'pentagon', flip=True)
net_grow(6, 0, 1, 'pentagon', flip=True)
net_grow(6, 1, 2, 'pentagon', flip=True)
net_grow(6, 2, 3, 'pentagon', flip=True)
net_grow(6, 3, 4, 'pentagon', flip=True)
net_grow(6, 4, 0, 'pentagon', flip=True)
net_show()
'NetBuilder: 12 shapes, 0 flaps\n [0] pentagon - edges: [0, 1, 2, 3, 4]\n [1] pentagon - edges: [0, 1, 2, 3, 4]\n [2] pentagon - edges: [0, 1, 2, 3, 4]\n [3] pentagon - edges: [0, 1, 2, 3, 4]\n [4] pentagon - edges: [0, 1, 2, 3, 4]\n [5] pentagon - edges: [0, 1, 2, 3, 4]\n [6] pentagon - edges: [0, 1, 2, 3, 4]\n [7] pentagon - edges: [0, 1, 2, 3, 4]\n [8] pentagon - edges: [0, 1, 2, 3, 4]\n [9] pentagon - edges: [0, 1, 2, 3, 4]\n [10] pentagon - edges: [0, 1, 2, 3, 4]\n [11] pentagon - edges: [0, 1, 2, 3, 4]'net_reset()
net_start('pentagon')
net_grow(0, 0, 1, 'pentagon', flip=True)
net_grow(0, 1, 2, 'pentagon', flip=True)
net_grow(0, 2, 3, 'pentagon', flip=True)
net_grow(0, 3, 4, 'pentagon', flip=True)
net_grow(0, 4, 0, 'pentagon', flip=True)
net_grow(3, 3, 4, 'pentagon', flip=True)
net_grow(6, 0, 1, 'pentagon', flip=True)
net_grow(6, 1, 2, 'pentagon', flip=True)
net_grow(6, 2, 3, 'pentagon', flip=True)
net_grow(6, 3, 4, 'pentagon', flip=True)
net_grow(6, 4, 0, 'pentagon', flip=True)
net_add_flap(1, 1, 2)
net_add_flap(1, 2, 3)
net_add_flap(1, 3, 4)
net_add_flap(2, 2, 3)
net_add_flap(2, 3, 4)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 4)
net_add_flap(4, 2, 3)
net_add_flap(4, 3, 4)
net_add_flap(7, 1, 2)
net_add_flap(7, 2, 3)
net_add_flap(8, 1, 2)
net_add_flap(8, 2, 3)
net_add_flap(9, 1, 2)
net_add_flap(9, 2, 3)
net_add_flap(10, 1, 2)
net_add_flap(10, 2, 3)
net_add_flap(11, 1, 2)
net_add_flap(11, 2, 3)
net_add_flap(11, 3, 4)
net_show()
net_reset()
net_start('pentagon')
net_grow(0, 0, 1, 'pentagon', flip=True)
net_grow(0, 1, 2, 'pentagon', flip=True)
net_grow(0, 2, 3, 'pentagon', flip=True)
net_grow(0, 3, 4, 'pentagon', flip=True)
net_grow(0, 4, 0, 'pentagon', flip=True)
net_grow(3, 3, 4, 'pentagon', flip=True)
net_grow(6, 0, 1, 'pentagon', flip=True)
net_grow(6, 1, 2, 'pentagon', flip=True)
net_grow(6, 2, 3, 'pentagon', flip=True)
net_grow(6, 3, 4, 'pentagon', flip=True)
net_grow(6, 4, 0, 'pentagon', flip=True)
net_add_flap(1, 1, 2)
net_add_flap(1, 2, 3)
net_add_flap(1, 3, 4)
net_add_flap(2, 2, 3)
net_add_flap(2, 3, 4)
net_add_flap(5, 2, 3)
net_add_flap(5, 3, 4)
net_add_flap(4, 2, 3)
net_add_flap(4, 3, 4)
net_add_flap(7, 1, 2)
net_add_flap(7, 2, 3)
net_add_flap(8, 1, 2)
net_add_flap(8, 2, 3)
net_add_flap(9, 1, 2)
net_add_flap(9, 2, 3)
net_add_flap(10, 1, 2)
net_add_flap(10, 2, 3)
net_add_flap(11, 1, 2)
net_add_flap(11, 2, 3)
net_add_flap(11, 3, 4)
net_show()
'NetBuilder: 12 shapes, 20 flaps\n [0] pentagon - edges: [0, 1, 2, 3, 4]\n [1] pentagon - edges: [0, 1, 2, 3, 4]\n [2] pentagon - edges: [0, 1, 2, 3, 4]\n [3] pentagon - edges: [0, 1, 2, 3, 4]\n [4] pentagon - edges: [0, 1, 2, 3, 4]\n [5] pentagon - edges: [0, 1, 2, 3, 4]\n [6] pentagon - edges: [0, 1, 2, 3, 4]\n [7] pentagon - edges: [0, 1, 2, 3, 4]\n [8] pentagon - edges: [0, 1, 2, 3, 4]\n [9] pentagon - edges: [0, 1, 2, 3, 4]\n [10] pentagon - edges: [0, 1, 2, 3, 4]\n [11] pentagon - edges: [0, 1, 2, 3, 4]\n Flaps: [(1, 1, 2), (1, 2, 3), (1, 3, 4), (2, 2, 3), (2, 3, 4), (5, 2, 3), (5, 3, 4), (4, 2, 3), (4, 3, 4), (7, 1, 2), (7, 2, 3), (8, 1, 2), (8, 2, 3), (9, 1, 2), (9, 2, 3), (10, 1, 2), (10, 2, 3), (11, 1, 2), (11, 2, 3), (11, 3, 4)]'