Try an interactive version of this dialog: Sign up at solve.it.com, click Upload, and pass this URL.
ディスカッションの内容を確認し、実際に実行時間を測るためのベンチマークを作成してほしい。
元のparens + "("の方法、私が提案したpath + "("の方法、oda-sanが提案した[path, "("]の方法の3つです。
n=1~10を試して10*3の表で実行時間をまとめるようにしてほしい。
🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠
{
"id": "toolu_01Wq1VqHe61JFgowhDpAQFNZ",
"call": {
"function": "read_url",
"arguments": {
"url": "https://github.com/skypenguins/coding-practice/pull/27#discussion_r2533462366"
}
},
"result": "'Copy link\\n\\n###\\n\\n **[oda](/oda) ** Nov 17, 2025\\n\\nThere was a problem hiding this comment.\\n\\n### Choose a reason for hiding this comment\\n\\nThe reason will be displayed to describe this comment to others. [Learn more](https://docs.github.com/articles/managing-disruptive-comments/#hiding-a-comment).\\n\\nChoose a reason Spam Abuse Off Topic Outdated Duplicate Resolved Hide comment\\n\\n\u3042\u3001\u8a71\u3068\u3057\u30663\u3064\u304f\u3089\u3044\u3042\u308a\u307e\u3059\u3002\\n\\n 1. \u305f\u3057\u304b\u306b\u6587\u5b57\u5217\u306f\u518d\u69cb\u7bc9\u3055\u308c\u308b\u3093\u3067\u3059\u304c\u3001path + [\"(\"] \u3082\u518d\u69cb\u7bc9\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u306a\u306e\u3067\u3001\u3084\u308b\u306a\u3089\u3070\u3001[path, \"(\"] \u3068\u3044\u3046\u98a8\u306b\u30da\u30a2\u306b\u3057\u3066\u6e21\u3059\u3068\u3044\u3044\u3067\u3057\u3087\u3046\u3002\u30da\u30a2\u306f\u30aa\u30d6\u30b8\u30a7\u30af\u30c8\u3078\u306e\u30dd\u30a4\u30f3\u30bf\u306e\u7d44\u306a\u306e\u3067\u5168\u4f53\u306e\u518d\u69cb\u7bc9\u304c\u3055\u308c\u307e\u305b\u3093\u3002\\n\\n 2. \u8a08\u7b97\u91cf\u304c\u4e0d\u5229\u306b\u306a\u308b\u304b\u602a\u3057\u3044\u3068\u601d\u3044\u307e\u3059\u3002 \\n\u8a3c\u660e\u307e\u3067\u306e\u6c34\u6e96\u3067\u306f\u8003\u3048\u3089\u308c\u3066\u3044\u307e\u305b\u3093\u3002\u30ab\u30bf\u30e9\u30f3\u6570\u3092\u751f\u6210\u3059\u308b\u6728\u306e\u4e2d\u9593\u30ce\u30fc\u30c9\u306e\u5404\u5c64\u306e\u6570\u306a\u3093\u3067\u3059\u304c\u3001ballot numbers \u306a\u3069\u3068\u3044\u308f\u308c\u308b\u3082\u306e\u306e\u548c\u3067\u8868\u305b\u307e\u3059\u3002\u53b3\u5bc6\u306a\u8a08\u7b97\u306f\u5927\u5909\u305d\u3046\u3067\u3059\u304c\u3001\u6700\u5f8c\u306e\u5c64\u304b\u3089\u5c11\u3057\u623b\u308b\u3068\u5e7e\u4f55\u7d1a\u6570\u7684\u306b\u6e1b\u3063\u3066\u3044\u304d\u307e\u3059\u3002\u6700\u7d42\u5c64\u304b\u3089 a \u5c64\u623b\u3063\u305f\u3068\u304d\u306e\u6e1b\u308a\u65b9\u306e\u6975\u9650\u306f (a/2+1)^2 / 2^a (\u5947\u6570\u306e\u5834\u5408\u306f\u3001(a^2-1) / 4 / 2^a) \u306a\u306e\u3067\u3001\u6700\u5f8c\u306e\u6570\u5c64\u306e\u30b3\u30d4\u30fc\u4ee5\u5916\u306f\u307b\u3068\u3093\u3069\u52b9\u304b\u306a\u3044\u3093\u3067\u3059\u306d\u3002 \\n\u3069\u3061\u3089\u306b\u3057\u3066\u3082\u6700\u5f8c\u306b\u5168\u6587\u5b57\u5217\u3092\u751f\u6210\u3057\u3066\u3044\u308b\u306e\u3067\u3001\u60aa\u304f\u306a\u3063\u305f\u3068\u3057\u3066\u3082\u305b\u3044\u305c\u3044\u6570\u500d\u3067\u3057\u3087\u3046\u3002\\n\\n 3. \u6587\u5b57\u5217\u306e\u30b3\u30d4\u30fc\u306f\u901f\u3044\u3067\u3059\u3002100\u500d\u304f\u3089\u3044\u3002\\n\\n\u5b9f\u969b\u306b\u8a08\u6e2c\u3057\u3066\u307f\u307e\u3057\u3087\u3046\u3002\\n\\nSorry, something went wrong.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\nAll reactions'"
}
{
"id": "toolu_01MgEPMTByW478wNaYtWBzcP",
"call": {
"function": "read_url",
"arguments": {
"url": "https://github.com/skypenguins/coding-practice/pull/27"
}
},
"result": "'Skip to content\\n\\n## Navigation Menu\\n\\nToggle navigation\\n\\n[ ](/)\\n\\n[ Sign in ](/login?return_to=https%3A%2F%2Fgithub.com%2Fskypenguins%2Fcoding-practice%2Fpull%2F27)\\n\\nAppearance settings\\n\\n * Platform \\n\\n * [ GitHub Copilot Write better code with AI ](https://github.com/features/copilot)\\n * [ GitHub Spark New Build and deploy intelligent apps ](https://github.com/features/spark)\\n * [ GitHub Models New Manage and compare prompts ](https://github.com/features/models)\\n * [ GitHub Advanced Security Find and fix vulnerabilities ](https://github.com/security/advanced-security)\\n * [ Actions Automate any workflow ](https://github.com/features/actions)\\n\\n * [ Codespaces Instant dev environments ](https://github.com/features/codespaces)\\n * [ Issues Plan and track work ](https://github.com/features/issues)\\n * [ Code Review Manage code changes ](https://github.com/features/code-review)\\n * [ Discussions Collaborate outside of code ](https://github.com/features/discussions)\\n * [ Code Search Find more, search less ](https://github.com/features/code-search)\\n\\nExplore\\n\\n * [ Why GitHub ](https://github.com/why-github)\\n * [ Documentation ](https://docs.github.com)\\n * [ GitHub Skills ](https://skills.github.com)\\n * [ Blog ](https://github.blog)\\n\\nIntegrations\\n\\n * [ GitHub Marketplace ](https://github.com/marketplace)\\n * [ MCP Registry ](https://github.com/mcp)\\n\\n[ View all features ](https://github.com/features)\\n\\n * Solutions \\n\\nBy company size\\n\\n * [ Enterprises ](https://github.com/enterprise)\\n * [ Small and medium teams ](https://github.com/team)\\n * [ Startups ](https://github.com/enterprise/startups)\\n * [ Nonprofits ](/solutions/industry/nonprofits)\\n\\nBy use case\\n\\n * [ App Modernization ](/solutions/use-case/app-modernization)\\n * [ DevSecOps ](/solutions/use-case/devsecops)\\n * [ DevOps ](/solutions/use-case/devops)\\n * [ CI/CD ](/solutions/use-case/ci-cd)\\n * [ View all use cases ](/solutions/use-case)\\n\\nBy industry\\n\\n * [ Healthcare ](/solutions/industry/healthcare)\\n * [ Financial services ](/solutions/industry/financial-services)\\n * [ Manufacturing ](/solutions/industry/manufacturing)\\n * [ Government ](/solutions/industry/government)\\n * [ View all industries ](/solutions/industry)\\n\\n[ View all solutions ](/solutions)\\n\\n * Resources \\n\\nTopics\\n\\n * [ AI ](/resources/articles?topic=ai)\\n * [ DevOps ](/resources/articles?topic=devops)\\n * [ Security ](/resources/articles?topic=security)\\n * [ Software Development ](/resources/articles?topic=software-development)\\n * [ View all ](/resources/articles)\\n\\nExplore\\n\\n * [ Learning Pathways ](https://resources.github.com/learn/pathways)\\n * [ Events & Webinars ](https://github.com/resources/events)\\n * [ Ebooks & Whitepapers ](https://github.com/resources/whitepapers)\\n * [ Customer Stories ](https://github.com/customer-stories)\\n * [ Partners ](https://github.com/partners)\\n * [ Executive Insights ](https://github.com/solutions/executive-insights)\\n\\n * Open Source \\n\\n * [ GitHub Sponsors Fund open source developers ](/sponsors)\\n\\n * [ The ReadME Project GitHub community articles ](https://github.com/readme)\\n\\nRepositories\\n\\n * [ Topics ](https://github.com/topics)\\n * [ Trending ](https://github.com/trending)\\n * [ Collections ](https://github.com/collections)\\n\\n * Enterprise \\n\\n * [ Enterprise platform AI-powered developer platform ](/enterprise)\\n\\nAvailable add-ons\\n\\n * [ GitHub Advanced Security Enterprise-grade security features ](https://github.com/security/advanced-security)\\n * [ Copilot for business Enterprise-grade AI features ](/features/copilot/copilot-business)\\n * [ Premium Support Enterprise-grade 24/7 support ](/premium-support)\\n\\n * [Pricing](https://github.com/pricing)\\n\\nSearch or jump to...\\n\\n# Search code, repositories, users, issues, pull requests...\\n\\nSearch\\n\\nClear\\n\\n[Search syntax tips](https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax)\\n\\n# Provide feedback\\n\\nWe read every piece of feedback, and take your input very seriously.\\n\\nInclude my email address so I can be contacted\\n\\nCancel Submit feedback\\n\\n# Saved searches\\n\\n## Use saved searches to filter your results more quickly\\n\\nName\\n\\nQuery\\n\\nTo see all available qualifiers, see our [documentation](https://docs.github.com/search-github/github-code-search/understanding-github-code-search-syntax).\\n\\nCancel Create saved search\\n\\n[ Sign in ](/login?return_to=https%3A%2F%2Fgithub.com%2Fskypenguins%2Fcoding-practice%2Fpull%2F27)\\n\\n[ Sign up ](/signup?ref_cta=Sign+up&ref_loc=header+logged+out&ref_page=%2F%3Cuser-name%3E%2F%3Crepo-name%3E%2Fvoltron%2Fpull_requests_fragments%2Fpull_request_layout&source=header-repo&source_repo=skypenguins%2Fcoding-practice)\\n\\nAppearance settings\\n\\nResetting focus\\n\\nYou signed in with another tab or window. [Reload]() to refresh your session. You signed out in another tab or window. [Reload]() to refresh your session. You switched accounts on another tab or window. [Reload]() to refresh your session. Dismiss alert\\n\\n{{ message }}\\n\\n[ skypenguins ](/skypenguins) / **[coding-practice](/skypenguins/coding-practice) ** Public\\n\\n * [ Notifications ](/login?return_to=%2Fskypenguins%2Fcoding-practice) You must be signed in to change notification settings\\n * [ Fork 0 ](/login?return_to=%2Fskypenguins%2Fcoding-practice)\\n * [ Star 0 ](/login?return_to=%2Fskypenguins%2Fcoding-practice)\\n\\n * [ Code ](/skypenguins/coding-practice)\\n * [ Issues 0 ](/skypenguins/coding-practice/issues)\\n * [ Pull requests 27 ](/skypenguins/coding-practice/pulls)\\n * [ Actions ](/skypenguins/coding-practice/actions)\\n * [ Projects 0 ](/skypenguins/coding-practice/projects)\\n * [ Security Uh oh! There was an error while loading. [Please reload this page](). ](/skypenguins/coding-practice/security)\\n * [ Insights ](/skypenguins/coding-practice/pulse)\\n\\nAdditional navigation options\\n\\n * [ Code ](/skypenguins/coding-practice)\\n * [ Issues ](/skypenguins/coding-practice/issues)\\n * [ Pull requests ](/skypenguins/coding-practice/pulls)\\n * [ Actions ](/skypenguins/coding-practice/actions)\\n * [ Projects ](/skypenguins/coding-practice/projects)\\n * [ Security ](/skypenguins/coding-practice/security)\\n * [ Insights ](/skypenguins/coding-practice/pulse)\\n\\n# 22\\\\. Generate Parentheses #27\\n\\nNew issue\\n\\n**Have a question about this project?** Sign up for a free GitHub account to open an issue and contact its maintainers and the community.\\n\\n[ Sign up for GitHub ](/signup?return_to=%2Fskypenguins%2Fcoding-practice%2Fissues%2Fnew%2Fchoose)\\n\\nBy clicking \"Sign up for GitHub\", you agree to our [terms of service](https://docs.github.com/terms) and [privacy statement](https://docs.github.com/privacy). We\u2019ll occasionally send you account related emails.\\n\\nAlready on GitHub? [Sign in](/login?return_to=%2Fskypenguins%2Fcoding-practice%2Fissues%2Fnew%2Fchoose) to your account\\n\\nJump to bottom\\n\\nOpen\\n\\n[skypenguins](/skypenguins) wants to merge 1 commit into [main](/skypenguins/coding-practice/tree/main \"skypenguins/coding-practice:main\")\\n\\n_base:_ main\\n\\nChoose a base branch\\n\\nBranches Tags\\n\\nCould not load branches\\n\\nBranch not found: **{{ refName }}**\\n\\nLoading\\n\\n{{ refName }} default\\n\\nCould not load tags\\n\\nNothing to show\\n\\n{{ refName }} default\\n\\nLoading\\n\\n### Are you sure you want to change the base?\\n\\nSome commits from the old base branch may be removed from the timeline, and old review comments may become outdated.\\n\\nLoading Change base\\n\\nfrom [leetcode/arai60/promlem-22](/skypenguins/coding-practice/tree/leetcode/arai60/promlem-22 \"skypenguins/coding-practice:leetcode/arai60/promlem-22\")\\n\\nOpen\\n\\n# 22\\\\. Generate Parentheses #27\\n\\n[skypenguins](/skypenguins) wants to merge 1 commit into [main](/skypenguins/coding-practice/tree/main \"skypenguins/coding-practice:main\") from [leetcode/arai60/promlem-22](/skypenguins/coding-practice/tree/leetcode/arai60/promlem-22 \"skypenguins/coding-practice:leetcode/arai60/promlem-22\")\\n\\n+159 \u22120\\n\\n[ Conversation 3 ](/skypenguins/coding-practice/pull/27) [ Commits 1 ](/skypenguins/coding-practice/pull/27/commits) [ Checks 0 ](/skypenguins/coding-practice/pull/27/checks) [ Files changed 1 ](/skypenguins/coding-practice/pull/27/files)\\n\\n## Conversation\\n\\nThis file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. [Learn more about bidirectional Unicode characters](https://github.co/hiddenchars)\\n\\n[ Show hidden characters ]({{ revealButtonHref }})\\n\\n[  ](/skypenguins)\\n\\nCopy link\\n\\nOwner\\n\\n###\\n\\n **[skypenguins](/skypenguins) ** commented Nov 16, 2025\\n\\n# 22\\\\. Generate Parentheses\\n\\n * \u554f\u984c: <https://leetcode.com/problems/generate-parentheses/>\\n * \u8a00\u8a9e: Python\\n\\n\u6b21\u56de\u4e88\u544a: [31\\\\. Next Permutation](https://leetcode.com/problems/next-permutation/)\\n\\nSorry, something went wrong.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\nAll reactions\\n\\n[  ](/skypenguins)\\n\\n` [22. Generate Parentheses](/skypenguins/coding-practice/pull/27/commits/ece181cbfa0dce0c7bb082e6086629d96bf37bf2 \"22. Generate Parentheses\") `\\n\\n` [ece181c](/skypenguins/coding-practice/pull/27/commits/ece181cbfa0dce0c7bb082e6086629d96bf37bf2) `\\n\\n[](/skypenguins) [skypenguins](/skypenguins) self-assigned this Nov 16, 2025\\n\\n[](/skypenguins) [skypenguins](/skypenguins) added the [ arai60 ](/skypenguins/coding-practice/issues?q=state%3Aopen%20label%3Aarai60) label Nov 16, 2025\\n\\n[](/docto-rin)\\n\\n**[docto-rin](/docto-rin) ** reviewed Nov 16, 2025\\n\\n[ View reviewed changes ](/skypenguins/coding-practice/pull/27/files/ece181cbfa0dce0c7bb082e6086629d96bf37bf2)\\n\\n[leetcode/arai60/memo.md](/skypenguins/coding-practice/pull/27/files/ece181cbfa0dce0c7bb082e6086629d96bf37bf2#diff-582300f2f8923de23d876e3fce724c4504135135c60d74ed1828d47534b52547)\\n\\n| | result.append(parens) \\n---|---|--- \\n| | return \\n| | if open_count < n: \\n| | gen_parens_helper(parens + \"(\", open_count + 1, close_count) \\n \\nCopy link\\n\\n###\\n\\n **[docto-rin](/docto-rin) ** Nov 16, 2025\\n\\nThere was a problem hiding this comment.\\n\\n### Choose a reason for hiding this comment\\n\\nThe reason will be displayed to describe this comment to others. [Learn more](https://docs.github.com/articles/managing-disruptive-comments/#hiding-a-comment).\\n\\nChoose a reason Spam Abuse Off Topic Outdated Duplicate Resolved Hide comment\\n\\nparents + \"(\"\u3067\u9010\u6b21\u6587\u5b57\u5217\u306e\u518d\u69cb\u7bc9\u304c\u8d70\u308b\u306e\u3067\u6642\u9593\u8a08\u7b97\u91cf\u3067\u4e0d\u5229\u306b\u306a\u308b\u3068\u601d\u3044\u307e\u3059\u3002\\n\\n> for\u30eb\u30fc\u30d7\u3092\u66f8\u304d\u4e0b\u3059\u3068 `\\'\\' + \\'s[0]\\' + \\'s[1]\\' + ... + \\'s[-1]\\'` \u306e\u3088\u3046\u306a\u30a4\u30df\u30e5\u30fc\u30bf\u30d6\u30eb\u306a\u30b7\u30fc\u30b1\u30f3\u30b9\u306e\u7d50\u5408\u306b\u306a\u3063\u3066\u304a\u308a\u3001\u30d1\u30d5\u30a9\u30fc\u30de\u30f3\u30b9\u306e\u89b3\u70b9\u304b\u3089\u907f\u3051\u308b\u3079\u304d\u3060\u3068\u601d\u3044\u307e\u3059\u3002\\n>\\n\\n>> \u30a4\u30df\u30e5\u30fc\u30bf\u30d6\u30eb\u306a\u30b7\u30fc\u30b1\u30f3\u30b9\u306e\u7d50\u5408\u306f\u3001\u5e38\u306b\u65b0\u3057\u3044\u30aa\u30d6\u30b8\u30a7\u30af\u30c8\u3092\u8fd4\u3057\u307e\u3059\u3002\u3053\u308c\u306f\u3001\u7d50\u5408\u306e\u7e70\u308a\u8fd4\u3057\u3067\u30b7\u30fc\u30b1\u30f3\u30b9\u3092\u69cb\u7bc9\u3059\u308b\u5b9f\u884c\u6642\u9593\u30b3\u30b9\u30c8\u304c\u30b7\u30fc\u30b1\u30f3\u30b9\u306e\u9577\u3055\u306e\u5408\u8a08\u306e\u4e8c\u6b21\u5f0f\u306b\u306a\u308b\u3053\u3068\u3092\u610f\u5473\u3057\u307e\u3059\u3002\u5b9f\u884c\u6642\u9593\u30b3\u30b9\u30c8\u3092\u7dda\u5f62\u306b\u3059\u308b\u306b\u306f\u3001\u4ee3\u308f\u308a\u306b\u4ee5\u4e0b\u306e\u3044\u305a\u308c\u304b\u306b\u3057\u3066\u304f\u3060\u3055\u3044:\\n\\n>>\\n\\n>> * [str](https://docs.python.org/ja/3.13/library/stdtypes.html#str) \u30aa\u30d6\u30b8\u30a7\u30af\u30c8\u3092\u7d50\u5408\u3059\u308b\u306b\u306f\u3001\u30ea\u30b9\u30c8\u3092\u69cb\u7bc9\u3057\u3066\u6700\u5f8c\u306b [str.join()](https://docs.python.org/ja/3.13/library/stdtypes.html#str.join) \u3092\u4f7f\u3046\u304b\u3001 [io.StringIO](https://docs.python.org/ja/3.13/library/io.html#io.StringIO) \u30a4\u30f3\u30b9\u30bf\u30f3\u30b9\u306b\u66f8\u304d\u8fbc\u3093\u3067\u5b8c\u6210\u3057\u3066\u304b\u3089\u5024\u3092\u53d6\u5f97\u3057\u3066\u304f\u3060\u3055\u3044 \\n> ...\\n>>\\n\\n>\\n> <https://docs.python.org/ja/3.13/library/stdtypes.html#string-methods>\\n\\n<https://discord.com/channels/1084280443945353267/1248276309738651669/1429794088366112909>\\n\\nSorry, something went wrong.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\nAll reactions\\n\\nCopy link\\n\\n###\\n\\n **[docto-rin](/docto-rin) ** Nov 16, 2025\\n\\nThere was a problem hiding this comment.\\n\\n### Choose a reason for hiding this comment\\n\\nThe reason will be displayed to describe this comment to others. [Learn more](https://docs.github.com/articles/managing-disruptive-comments/#hiding-a-comment).\\n\\nChoose a reason Spam Abuse Off Topic Outdated Duplicate Resolved Hide comment\\n\\n\u306a\u306e\u3067\u4f8b\u3048\u3070\u4ee5\u4e0b\u306e\u3088\u3046\u306b\u306a\u308a\u307e\u3059\u3002\uff08\u4ee5\u4e0b\u306floop + stack\u306b\u306a\u3063\u3066\u307e\u3059\u304c\u3001\u518d\u5e30\u95a2\u6570\u3067\u3082\u540c\u3058\u3067\u3059\u3002\uff09\\n\\n```\\nclass Solution:\\n def generateParenthesis(self, n: int) -> list[str]:\\n results = []\\n stack = [([], n, n)]\\n while stack:\\n path, open_remain, close_remain = stack.pop()\\n\\n if open_remain == 0 and close_remain == 0:\\n results.append(\"\".join(path))\\n continue\\n if open_remain > 0:\\n stack.append((path + [\"(\"], open_remain - 1, close_remain))\\n if close_remain > open_remain:\\n stack.append((path + [\")\"], open_remain, close_remain - 1))\\n\\n return results\\n```\\n\\nSorry, something went wrong.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\nAll reactions\\n\\nCopy link\\n\\n###\\n\\n **[oda](/oda) ** Nov 17, 2025\\n\\nThere was a problem hiding this comment.\\n\\n### Choose a reason for hiding this comment\\n\\nThe reason will be displayed to describe this comment to others. [Learn more](https://docs.github.com/articles/managing-disruptive-comments/#hiding-a-comment).\\n\\nChoose a reason Spam Abuse Off Topic Outdated Duplicate Resolved Hide comment\\n\\n\u3042\u3001\u8a71\u3068\u3057\u30663\u3064\u304f\u3089\u3044\u3042\u308a\u307e\u3059\u3002\\n\\n 1. \u305f\u3057\u304b\u306b\u6587\u5b57\u5217\u306f\u518d\u69cb\u7bc9\u3055\u308c\u308b\u3093\u3067\u3059\u304c\u3001path + [\"(\"] \u3082\u518d\u69cb\u7bc9\u3055\u308c\u3066\u3044\u307e\u3059\u3002\u306a\u306e\u3067\u3001\u3084\u308b\u306a\u3089\u3070\u3001[path, \"(\"] \u3068\u3044\u3046\u98a8\u306b\u30da\u30a2\u306b\u3057\u3066\u6e21\u3059\u3068\u3044\u3044\u3067\u3057\u3087\u3046\u3002\u30da\u30a2\u306f\u30aa\u30d6\u30b8\u30a7\u30af\u30c8\u3078\u306e\u30dd\u30a4\u30f3\u30bf\u306e\u7d44\u306a\u306e\u3067\u5168\u4f53\u306e\u518d\u69cb\u7bc9\u304c\u3055\u308c\u307e\u305b\u3093\u3002\\n\\n 2. \u8a08\u7b97\u91cf\u304c\u4e0d\u5229\u306b\u306a\u308b\u304b\u602a\u3057\u3044\u3068\u601d\u3044\u307e\u3059\u3002 \\n\u8a3c\u660e\u307e\u3067\u306e\u6c34\u6e96\u3067\u306f\u8003\u3048\u3089\u308c\u3066\u3044\u307e\u305b\u3093\u3002\u30ab\u30bf\u30e9\u30f3\u6570\u3092\u751f\u6210\u3059\u308b\u6728\u306e\u4e2d\u9593\u30ce\u30fc\u30c9\u306e\u5404\u5c64\u306e\u6570\u306a\u3093\u3067\u3059\u304c\u3001ballot numbers \u306a\u3069\u3068\u3044\u308f\u308c\u308b\u3082\u306e\u306e\u548c\u3067\u8868\u305b\u307e\u3059\u3002\u53b3\u5bc6\u306a\u8a08\u7b97\u306f\u5927\u5909\u305d\u3046\u3067\u3059\u304c\u3001\u6700\u5f8c\u306e\u5c64\u304b\u3089\u5c11\u3057\u623b\u308b\u3068\u5e7e\u4f55\u7d1a\u6570\u7684\u306b\u6e1b\u3063\u3066\u3044\u304d\u307e\u3059\u3002\u6700\u7d42\u5c64\u304b\u3089 a \u5c64\u623b\u3063\u305f\u3068\u304d\u306e\u6e1b\u308a\u65b9\u306e\u6975\u9650\u306f (a/2+1)^2 / 2^a (\u5947\u6570\u306e\u5834\u5408\u306f\u3001(a^2-1) / 4 / 2^a) \u306a\u306e\u3067\u3001\u6700\u5f8c\u306e\u6570\u5c64\u306e\u30b3\u30d4\u30fc\u4ee5\u5916\u306f\u307b\u3068\u3093\u3069\u52b9\u304b\u306a\u3044\u3093\u3067\u3059\u306d\u3002 \\n\u3069\u3061\u3089\u306b\u3057\u3066\u3082\u6700\u5f8c\u306b\u5168\u6587\u5b57\u5217\u3092\u751f\u6210\u3057\u3066\u3044\u308b\u306e\u3067\u3001\u60aa\u304f\u306a\u3063\u305f\u3068\u3057\u3066\u3082\u305b\u3044\u305c\u3044\u6570\u500d\u3067\u3057\u3087\u3046\u3002\\n\\n 3. \u6587\u5b57\u5217\u306e\u30b3\u30d4\u30fc\u306f\u901f\u3044\u3067\u3059\u3002100\u500d\u304f\u3089\u3044\u3002\\n\\n\u5b9f\u969b\u306b\u8a08\u6e2c\u3057\u3066\u307f\u307e\u3057\u3087\u3046\u3002\\n\\nSorry, something went wrong.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\nAll reactions\\n\\n[Sign up for free](/join?source=comment-repo) **to join this conversation on GitHub**. Already have an account? [Sign in to comment](/login?return_to=https%3A%2F%2Fgithub.com%2Fskypenguins%2Fcoding-practice%2Fpull%2F27)\\n\\n### Reviewers\\n\\n2 more reviewers\\n\\n[  ](/oda) [ oda ](/oda) [ ](/skypenguins/coding-practice/pull/27/files/ece181cbfa0dce0c7bb082e6086629d96bf37bf2) oda left review comments\\n\\n[  ](/docto-rin) [ docto-rin ](/docto-rin) [ ](/skypenguins/coding-practice/pull/27/files/ece181cbfa0dce0c7bb082e6086629d96bf37bf2) docto-rin left review comments\\n\\nReviewers whose approvals may not affect merge requirements\\n\\n### Assignees\\n\\n[  ](/skypenguins) [ skypenguins ](/skypenguins)\\n\\n### Labels\\n\\n[ arai60 ](/skypenguins/coding-practice/issues?q=state%3Aopen%20label%3Aarai60)\\n\\n### Projects\\n\\nNone yet\\n\\n### Milestone\\n\\nNo milestone\\n\\n### Development\\n\\nSuccessfully merging this pull request may close these issues.\\n\\n### Uh oh!\\n\\nThere was an error while loading. [Please reload this page]().\\n\\n### 4 participants\\n\\n[  ](/skypenguins) [  ](/oda) [  ](/docto-rin) [ ](/apps/copilot-swe-agent)\\n\\nAdd this suggestion to a batch that can be applied as a single commit. This suggestion is invalid because no changes were made to the code. Suggestions cannot be applied while the pull request is closed. Suggestions cannot be applied while viewing a subset of changes. Only one suggestion per line can be applied in a batch. Add this suggestion to a batch that can be applied as a single commit. Applying suggestions on deleted lines is not supported. You must change the existing code in this line in order to create a valid suggestion. Outdated suggestions cannot be applied. This suggestion has been applied or marked resolved. Suggestions cannot be applied from pending reviews. Suggestions cannot be applied on multi-line comments. Suggestions cannot be applied while the pull request is queued to merge. Suggestion cannot be applied right now. Please check back later.\\n\\n## Footer\\n\\n[ ](https://github.com) (C) 2025 GitHub, Inc.\\n\\n### Footer navigation\\n\\n * [Terms](https://docs.github.com/site-policy/github-terms/github-terms-of-service)\\n * [Privacy](https://docs.github.com/site-policy/privacy-policies/github-privacy-statement)\\n * [Security](https://github.com/security)\\n * [Status](https://www.githubstatus.com/)\\n * [Community](https://github.community/)\\n * [Docs](https://docs.github.com/)\\n * [Contact](https://support.github.com?tags=dotcom-footer)\\n * Manage cookies \\n * Do not share my personal information \\n\\nYou can\u2019t perform that action at this time.'"
}
ディスカッションの内容を確認しました。3つの方法のパフォーマンスを比較するベンチマークを作成しますね:
- 元の方法:
parens + "("(文字列結合) - docto-rinさんの提案:
path + ["("](リスト結合) - odaさんの提案:
[path, "("](ペア構築)
import time
import pandas as pd
# 方法1: 元の parens + "(" (文字列結合)
def generate_method1(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# 方法2: path + ["("] (リスト結合)
def generate_method2(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# 方法3: [path, "("] (ペア構築)
def generate_method3(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
# pathを平坦化して文字列に変換
def flatten(lst):
if isinstance(lst, str):
return [lst]
res = []
for item in lst:
res.extend(flatten(item))
return res
result.append("".join(flatten(path)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
# 方法1
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
generate_method1(n)
time1 = (time.perf_counter() - start) / 10
# 方法2
start = time.perf_counter()
for _ in range(10):
generate_method2(n)
time2 = (time.perf_counter() - start) / 10
# 方法3
start = time.perf_counter()
for _ in range(10):
generate_method3(n)
time3 = (time.perf_counter() - start) / 10
results.append({
'n': n,
'method1 (str+str)': f'{time1*1000:.3f}ms',
'method2 (list+list)': f'{time2*1000:.3f}ms',
'method3 (pair)': f'{time3*1000:.3f}ms',
'time1_raw': time1,
'time2_raw': time2,
'time3_raw': time3
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'method1 (str+str)', 'method2 (list+list)', 'method3 (pair)']].copy()
print("\n" + "="*80)
print("実行時間の比較 (10回実行の平均)")
print("="*80)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*80)
print("各手法の相対的な速度 (method1を基準として)")
print("="*80)
for idx, row in df.iterrows():
n = row['n']
t1 = row['time1_raw']
t2 = row['time2_raw']
t3 = row['time3_raw']
print(f"n={n:2d}: method1=1.00x method2={t2/t1:.2f}x method3={t3/t1:.2f}x")
return df
# 結果の検証(最初の実行で正しい結果が得られているか確認)
print("Verifying results are correct...")
for n in [1, 2, 3]:
r1 = set(generate_method1(n))
r2 = set(generate_method2(n))
r3 = set(generate_method3(n))
assert r1 == r2 == r3, f"Results don't match for n={n}"
print("✓ All methods produce identical results\n")
# ベンチマーク実行
df = benchmark()
このコードは3つの方法を比較し、n=1から10までの各ケースで実行時間を測定して表形式で表示します。また、method1を基準にした相対的な速度も表示します。
🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠
はい、その通りです!方法3の構造は [previous_path, char] という形なので、インデックスアクセスで辿っていくだけで構築できます:
# 方法3: [path, "("] (ペア構築) - 改善版
def generate_method3(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
# pathをインデックスアクセスで辿って文字列に変換
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
この方法だと:
path[0]が前の状態path[1]が追加された文字- 空のリスト
[]が終端
という構造なので、単純にループで current[1] を取り出して current[0] に進むだけです。最後に reversed() で順序を戻します。
これで再帰的な flatten 関数や extend が不要になり、よりシンプルで効率的になります!
import time
import pandas as pd
# 方法1: 元の parens + "(" (文字列結合)
def generate_method1(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# 方法2: path + ["("] (リスト結合)
def generate_method2(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# 方法3: [path, "("] (ペア構築)
def generate_method3(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
# pathをインデックスアクセスで辿って文字列に変換
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
# 方法1
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
generate_method1(n)
time1 = (time.perf_counter() - start) / 10
# 方法2
start = time.perf_counter()
for _ in range(10):
generate_method2(n)
time2 = (time.perf_counter() - start) / 10
# 方法3
start = time.perf_counter()
for _ in range(10):
generate_method3(n)
time3 = (time.perf_counter() - start) / 10
results.append({
'n': n,
'method1 (str+str)': f'{time1*1000:.3f}ms',
'method2 (list+list)': f'{time2*1000:.3f}ms',
'method3 (pair)': f'{time3*1000:.3f}ms',
'time1_raw': time1,
'time2_raw': time2,
'time3_raw': time3
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'method1 (str+str)', 'method2 (list+list)', 'method3 (pair)']].copy()
print("\n" + "="*80)
print("実行時間の比較 (10回実行の平均)")
print("="*80)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*80)
print("各手法の相対的な速度 (method1を基準として)")
print("="*80)
for idx, row in df.iterrows():
n = row['n']
t1 = row['time1_raw']
t2 = row['time2_raw']
t3 = row['time3_raw']
print(f"n={n:2d}: method1=1.00x method2={t2/t1:.2f}x method3={t3/t1:.2f}x")
return df
# ベンチマーク実行
df = benchmark()
Testing n=1...
Testing n=2...
Testing n=3...
Testing n=4...
Testing n=5...
Testing n=6...
Testing n=7...
Testing n=8...
Testing n=9...
Testing n=10...
================================================================================
実行時間の比較 (10回実行の平均)
================================================================================
n method1 (str+str) method2 (list+list) method3 (pair)
1 0.003ms 0.001ms 0.002ms
2 0.002ms 0.002ms 0.003ms
3 0.003ms 0.005ms 0.008ms
4 0.010ms 0.014ms 0.020ms
5 0.036ms 0.054ms 0.066ms
6 0.098ms 0.141ms 0.241ms
7 0.350ms 0.466ms 0.777ms
8 1.170ms 1.594ms 2.679ms
9 3.776ms 5.598ms 9.969ms
10 13.568ms 21.905ms 35.230ms
================================================================================
各手法の相対的な速度 (method1を基準として)
================================================================================
n= 1: method1=1.00x method2=0.50x method3=0.72x
n= 2: method1=1.00x method2=1.53x method3=1.78x
n= 3: method1=1.00x method2=1.46x method3=2.27x
n= 4: method1=1.00x method2=1.46x method3=2.09x
n= 5: method1=1.00x method2=1.48x method3=1.82x
n= 6: method1=1.00x method2=1.44x method3=2.47x
n= 7: method1=1.00x method2=1.33x method3=2.22x
n= 8: method1=1.00x method2=1.36x method3=2.29x
n= 9: method1=1.00x method2=1.48x method3=2.64x
n=10: method1=1.00x method2=1.61x method3=2.60x
🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠
import time
import pandas as pd
# === 方法1: parens + "(" (文字列結合) ===
# 再帰版
def generate_method1_recursive(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# stack+loop版
def generate_method1_stack(n: int) -> list[str]:
result = []
stack = [("", 0, 0)]
while stack:
parens, open_count, close_count = stack.pop()
if len(parens) == 2 * n:
result.append(parens)
continue
if close_count < open_count:
stack.append((parens + ")", open_count, close_count + 1))
if open_count < n:
stack.append((parens + "(", open_count + 1, close_count))
return result
# === 方法2: path + ["("] (リスト結合) ===
# 再帰版
def generate_method2_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method2_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
result.append("".join(path))
continue
if close_count < open_count:
stack.append((path + [")"], open_count, close_count + 1))
if open_count < n:
stack.append((path + ["("], open_count + 1, close_count))
return result
# === 方法3: [path, "("] (ペア構築) ===
# 再帰版
def generate_method3_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method3_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
continue
if close_count < open_count:
stack.append(([path, ")"], open_count, close_count + 1))
if open_count < n:
stack.append(([path, "("], open_count + 1, close_count))
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
times = {}
methods = [
("method1_recursive", generate_method1_recursive),
("method1_stack", generate_method1_stack),
("method2_recursive", generate_method2_recursive),
("method2_stack", generate_method2_stack),
("method3_recursive", generate_method3_recursive),
("method3_stack", generate_method3_stack),
]
for name, func in methods:
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
func(n)
times[name] = (time.perf_counter() - start) / 10
results.append({
'n': n,
'M1-再帰': f'{times["method1_recursive"]*1000:.3f}ms',
'M1-stack': f'{times["method1_stack"]*1000:.3f}ms',
'M2-再帰': f'{times["method2_recursive"]*1000:.3f}ms',
'M2-stack': f'{times["method2_stack"]*1000:.3f}ms',
'M3-再帰': f'{times["method3_recursive"]*1000:.3f}ms',
'M3-stack': f'{times["method3_stack"]*1000:.3f}ms',
**{f'{k}_raw': v for k, v in times.items()}
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'M1-再帰', 'M1-stack', 'M2-再帰', 'M2-stack', 'M3-再帰', 'M3-stack']].copy()
print("\n" + "="*100)
print("実行時間の比較 (10回実行の平均)")
print("M1=method1(str+str), M2=method2(list+list), M3=method3(pair)")
print("="*100)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*100)
print("各手法の相対的な速度 (M1-再帰を基準として)")
print("="*100)
for idx, row in df.iterrows():
n = row['n']
base = row['method1_recursive_raw']
print(f"n={n:2d}: M1-再帰=1.00x M1-stack={row['method1_stack_raw']/base:.2f}x "
f"M2-再帰={row['method2_recursive_raw']/base:.2f}x M2-stack={row['method2_stack_raw']/base:.2f}x "
f"M3-再帰={row['method3_recursive_raw']/base:.2f}x M3-stack={row['method3_stack_raw']/base:.2f}x")
return df
# 結果の検証
print("Verifying results are correct...")
for n in [1, 2, 3]:
r1r = set(generate_method1_recursive(n))
r1s = set(generate_method1_stack(n))
r2r = set(generate_method2_recursive(n))
r2s = set(generate_method2_stack(n))
r3r = set(generate_method3_recursive(n))
r3s = set(generate_method3_stack(n))
assert r1r == r1s == r2r == r2s == r3r == r3s, f"Results don't match for n={n}"
print("✓ All methods produce identical results\n")
# ベンチマーク実行
df = benchmark()
このコードは6つの実装(各方法につき再帰版とstack+loop版)を比較します。再帰版とループ版でどれくらいパフォーマンスが変わるかも見られます。
import time
import pandas as pd
# === 方法1: parens + "(" (文字列結合) ===
# 再帰版
def generate_method1_recursive(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# stack+loop版
def generate_method1_stack(n: int) -> list[str]:
result = []
stack = [("", 0, 0)]
while stack:
parens, open_count, close_count = stack.pop()
if len(parens) == 2 * n:
result.append(parens)
continue
if close_count < open_count:
stack.append((parens + ")", open_count, close_count + 1))
if open_count < n:
stack.append((parens + "(", open_count + 1, close_count))
return result
# === 方法2: path + ["("] (リスト結合) ===
# 再帰版
def generate_method2_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method2_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
result.append("".join(path))
continue
if close_count < open_count:
stack.append((path + [")"], open_count, close_count + 1))
if open_count < n:
stack.append((path + ["("], open_count + 1, close_count))
return result
# === 方法3: [path, "("] (ペア構築) ===
# 再帰版
def generate_method3_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method3_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
continue
if close_count < open_count:
stack.append(([path, ")"], open_count, close_count + 1))
if open_count < n:
stack.append(([path, "("], open_count + 1, close_count))
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
times = {}
methods = [
("method1_recursive", generate_method1_recursive),
("method1_stack", generate_method1_stack),
("method2_recursive", generate_method2_recursive),
("method2_stack", generate_method2_stack),
("method3_recursive", generate_method3_recursive),
("method3_stack", generate_method3_stack),
]
for name, func in methods:
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
func(n)
times[name] = (time.perf_counter() - start) / 10
results.append({
'n': n,
'M1-再帰': f'{times["method1_recursive"]*1000:.3f}ms',
'M1-stack': f'{times["method1_stack"]*1000:.3f}ms',
'M2-再帰': f'{times["method2_recursive"]*1000:.3f}ms',
'M2-stack': f'{times["method2_stack"]*1000:.3f}ms',
'M3-再帰': f'{times["method3_recursive"]*1000:.3f}ms',
'M3-stack': f'{times["method3_stack"]*1000:.3f}ms',
**{f'{k}_raw': v for k, v in times.items()}
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'M1-再帰', 'M1-stack', 'M2-再帰', 'M2-stack', 'M3-再帰', 'M3-stack']].copy()
print("\n" + "="*100)
print("実行時間の比較 (10回実行の平均)")
print("M1=method1(str+str), M2=method2(list+list), M3=method3(pair)")
print("="*100)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*100)
print("各手法の相対的な速度 (M1-再帰を基準として)")
print("="*100)
for idx, row in df.iterrows():
n = row['n']
base = row['method1_recursive_raw']
print(f"n={n:2d}: M1-再帰=1.00x M1-stack={row['method1_stack_raw']/base:.2f}x "
f"M2-再帰={row['method2_recursive_raw']/base:.2f}x M2-stack={row['method2_stack_raw']/base:.2f}x "
f"M3-再帰={row['method3_recursive_raw']/base:.2f}x M3-stack={row['method3_stack_raw']/base:.2f}x")
return df
# ベンチマーク実行
df = benchmark()
Testing n=1...
Testing n=2...
Testing n=3...
Testing n=4...
Testing n=5...
Testing n=6...
Testing n=7...
Testing n=8...
Testing n=9...
Testing n=10...
====================================================================================================
実行時間の比較 (10回実行の平均)
M1=method1(str+str), M2=method2(list+list), M3=method3(pair)
====================================================================================================
n M1-再帰 M1-stack M2-再帰 M2-stack M3-再帰 M3-stack
1 0.001ms 0.001ms 0.002ms 0.001ms 0.002ms 0.001ms
2 0.002ms 0.002ms 0.002ms 0.002ms 0.003ms 0.003ms
3 0.004ms 0.004ms 0.005ms 0.006ms 0.007ms 0.008ms
4 0.010ms 0.012ms 0.016ms 0.017ms 0.021ms 0.022ms
5 0.044ms 0.039ms 0.046ms 0.052ms 0.068ms 0.081ms
6 0.109ms 0.122ms 0.140ms 0.182ms 0.230ms 0.246ms
7 0.348ms 0.440ms 0.464ms 0.561ms 0.792ms 0.857ms
8 1.178ms 1.328ms 1.597ms 1.936ms 2.709ms 2.901ms
9 3.841ms 4.618ms 5.604ms 6.607ms 9.849ms 10.783ms
10 13.116ms 17.450ms 20.162ms 23.610ms 35.632ms 38.920ms
====================================================================================================
各手法の相対的な速度 (M1-再帰を基準として)
====================================================================================================
n= 1: M1-再帰=1.00x M1-stack=0.76x M2-再帰=1.11x M2-stack=0.74x M3-再帰=1.42x M3-stack=1.01x
n= 2: M1-再帰=1.00x M1-stack=1.10x M2-再帰=1.42x M2-stack=1.42x M3-再帰=1.77x M3-stack=1.79x
n= 3: M1-再帰=1.00x M1-stack=1.21x M2-再帰=1.46x M2-stack=1.65x M3-再帰=2.04x M3-stack=2.18x
n= 4: M1-再帰=1.00x M1-stack=1.28x M2-再帰=1.64x M2-stack=1.74x M3-再帰=2.11x M3-stack=2.30x
n= 5: M1-再帰=1.00x M1-stack=0.88x M2-再帰=1.07x M2-stack=1.20x M3-再帰=1.55x M3-stack=1.85x
n= 6: M1-再帰=1.00x M1-stack=1.12x M2-再帰=1.28x M2-stack=1.66x M3-再帰=2.10x M3-stack=2.25x
n= 7: M1-再帰=1.00x M1-stack=1.26x M2-再帰=1.33x M2-stack=1.61x M3-再帰=2.27x M3-stack=2.46x
n= 8: M1-再帰=1.00x M1-stack=1.13x M2-再帰=1.36x M2-stack=1.64x M3-再帰=2.30x M3-stack=2.46x
n= 9: M1-再帰=1.00x M1-stack=1.20x M2-再帰=1.46x M2-stack=1.72x M3-再帰=2.56x M3-stack=2.81x
n=10: M1-再帰=1.00x M1-stack=1.33x M2-再帰=1.54x M2-stack=1.80x M3-再帰=2.72x M3-stack=2.97x
oda-sanから、
generate_method2_recursive は、コピーせずに pop することでバックトラックする手がありますね。
というコメントをもらいましたこれも追加で定義してベンチマークを取り直しましょう。
🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠
import time
import pandas as pd
# === 方法1: parens + "(" (文字列結合) ===
# 再帰版
def generate_method1_recursive(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# stack+loop版
def generate_method1_stack(n: int) -> list[str]:
result = []
stack = [("", 0, 0)]
while stack:
parens, open_count, close_count = stack.pop()
if len(parens) == 2 * n:
result.append(parens)
continue
if close_count < open_count:
stack.append((parens + ")", open_count, close_count + 1))
if open_count < n:
stack.append((parens + "(", open_count + 1, close_count))
return result
# === 方法2: path + ["("] (リスト結合) ===
# 再帰版
def generate_method2_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method2_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
result.append("".join(path))
continue
if close_count < open_count:
stack.append((path + [")"], open_count, close_count + 1))
if open_count < n:
stack.append((path + ["("], open_count + 1, close_count))
return result
# バックトラック版(再帰のみ)
def generate_method2_backtrack(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
path.append("(")
helper(path, open_count + 1, close_count)
path.pop()
if close_count < open_count:
path.append(")")
helper(path, open_count, close_count + 1)
path.pop()
helper([], 0, 0)
return result
# === 方法3: [path, "("] (ペア構築) ===
# 再帰版
def generate_method3_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method3_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
continue
if close_count < open_count:
stack.append(([path, ")"], open_count, close_count + 1))
if open_count < n:
stack.append(([path, "("], open_count + 1, close_count))
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
times = {}
methods = [
("method1_recursive", generate_method1_recursive),
("method1_stack", generate_method1_stack),
("method2_recursive", generate_method2_recursive),
("method2_stack", generate_method2_stack),
("method2_backtrack", generate_method2_backtrack),
("method3_recursive", generate_method3_recursive),
("method3_stack", generate_method3_stack),
]
for name, func in methods:
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
func(n)
times[name] = (time.perf_counter() - start) / 10
results.append({
'n': n,
'M1-再帰': f'{times["method1_recursive"]*1000:.3f}ms',
'M1-stack': f'{times["method1_stack"]*1000:.3f}ms',
'M2-再帰': f'{times["method2_recursive"]*1000:.3f}ms',
'M2-stack': f'{times["method2_stack"]*1000:.3f}ms',
'M2-BT': f'{times["method2_backtrack"]*1000:.3f}ms',
'M3-再帰': f'{times["method3_recursive"]*1000:.3f}ms',
'M3-stack': f'{times["method3_stack"]*1000:.3f}ms',
**{f'{k}_raw': v for k, v in times.items()}
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'M1-再帰', 'M1-stack', 'M2-再帰', 'M2-stack', 'M2-BT', 'M3-再帰', 'M3-stack']].copy()
print("\n" + "="*110)
print("実行時間の比較 (10回実行の平均)")
print("M1=method1(str+str), M2=method2(list+list), M3=method3(pair), BT=backtrack")
print("="*110)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*110)
print("各手法の相対的な速度 (M1-再帰を基準として)")
print("="*110)
for idx, row in df.iterrows():
n = row['n']
base = row['method1_recursive_raw']
print(f"n={n:2d}: M1-再帰=1.00x M1-stack={row['method1_stack_raw']/base:.2f}x "
f"M2-再帰={row['method2_recursive_raw']/base:.2f}x M2-stack={row['method2_stack_raw']/base:.2f}x "
f"M2-BT={row['method2_backtrack_raw']/base:.2f}x "
f"M3-再帰={row['method3_recursive_raw']/base:.2f}x M3-stack={row['method3_stack_raw']/base:.2f}x")
return df
# 結果の検証
print("Verifying results are correct...")
for n in [1, 2, 3]:
r1r = set(generate_method1_recursive(n))
r1s = set(generate_method1_stack(n))
r2r = set(generate_method2_recursive(n))
r2s = set(generate_method2_stack(n))
r2b = set(generate_method2_backtrack(n))
r3r = set(generate_method3_recursive(n))
r3s = set(generate_method3_stack(n))
assert r1r == r1s == r2r == r2s == r2b == r3r == r3s, f"Results don't match for n={n}"
print("✓ All methods produce identical results\n")
# ベンチマーク実行
df = benchmark()
バックトラック版(M2-BT)を追加しました。この方法は path.append() と path.pop() を使ってリストのコピーを避けるため、M2-再帰よりも高速になるはずです。
import time
import pandas as pd
# === 方法1: parens + "(" (文字列結合) ===
# 再帰版
def generate_method1_recursive(n: int) -> list[str]:
result = []
def helper(parens, open_count, close_count):
if len(parens) == 2 * n:
result.append(parens)
return
if open_count < n:
helper(parens + "(", open_count + 1, close_count)
if close_count < open_count:
helper(parens + ")", open_count, close_count + 1)
helper("", 0, 0)
return result
# stack+loop版
def generate_method1_stack(n: int) -> list[str]:
result = []
stack = [("", 0, 0)]
while stack:
parens, open_count, close_count = stack.pop()
if len(parens) == 2 * n:
result.append(parens)
continue
if close_count < open_count:
stack.append((parens + ")", open_count, close_count + 1))
if open_count < n:
stack.append((parens + "(", open_count + 1, close_count))
return result
# === 方法2: path + ["("] (リスト結合) ===
# 再帰版
def generate_method2_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
helper(path + ["("], open_count + 1, close_count)
if close_count < open_count:
helper(path + [")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method2_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
result.append("".join(path))
continue
if close_count < open_count:
stack.append((path + [")"], open_count, close_count + 1))
if open_count < n:
stack.append((path + ["("], open_count + 1, close_count))
return result
# バックトラック版(再帰のみ)
def generate_method2_backtrack(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
result.append("".join(path))
return
if open_count < n:
path.append("(")
helper(path, open_count + 1, close_count)
path.pop()
if close_count < open_count:
path.append(")")
helper(path, open_count, close_count + 1)
path.pop()
helper([], 0, 0)
return result
# === 方法3: [path, "("] (ペア構築) ===
# 再帰版
def generate_method3_recursive(n: int) -> list[str]:
result = []
def helper(path, open_count, close_count):
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
return
if open_count < n:
helper([path, "("], open_count + 1, close_count)
if close_count < open_count:
helper([path, ")"], open_count, close_count + 1)
helper([], 0, 0)
return result
# stack+loop版
def generate_method3_stack(n: int) -> list[str]:
result = []
stack = [([], 0, 0)]
while stack:
path, open_count, close_count = stack.pop()
if open_count + close_count == 2 * n:
chars = []
current = path
while current:
chars.append(current[1])
current = current[0]
result.append("".join(reversed(chars)))
continue
if close_count < open_count:
stack.append(([path, ")"], open_count, close_count + 1))
if open_count < n:
stack.append(([path, "("], open_count + 1, close_count))
return result
# ベンチマーク実行
def benchmark():
results = []
for n in range(1, 11):
print(f"Testing n={n}...")
times = {}
methods = [
("method1_recursive", generate_method1_recursive),
("method1_stack", generate_method1_stack),
("method2_recursive", generate_method2_recursive),
("method2_stack", generate_method2_stack),
("method2_backtrack", generate_method2_backtrack),
("method3_recursive", generate_method3_recursive),
("method3_stack", generate_method3_stack),
]
for name, func in methods:
start = time.perf_counter()
for _ in range(10): # 10回実行して平均を取る
func(n)
times[name] = (time.perf_counter() - start) / 10
results.append({
'n': n,
'M1-再帰': f'{times["method1_recursive"]*1000:.3f}ms',
'M1-stack': f'{times["method1_stack"]*1000:.3f}ms',
'M2-再帰': f'{times["method2_recursive"]*1000:.3f}ms',
'M2-stack': f'{times["method2_stack"]*1000:.3f}ms',
'M2-BT': f'{times["method2_backtrack"]*1000:.3f}ms',
'M3-再帰': f'{times["method3_recursive"]*1000:.3f}ms',
'M3-stack': f'{times["method3_stack"]*1000:.3f}ms',
**{f'{k}_raw': v for k, v in times.items()}
})
df = pd.DataFrame(results)
# 表示用のDataFrame
display_df = df[['n', 'M1-再帰', 'M1-stack', 'M2-再帰', 'M2-stack', 'M2-BT', 'M3-再帰', 'M3-stack']].copy()
print("\n" + "="*110)
print("実行時間の比較 (10回実行の平均)")
print("M1=method1(str+str), M2=method2(list+list), M3=method3(pair), BT=backtrack")
print("="*110)
print(display_df.to_string(index=False))
# 比較分析
print("\n" + "="*110)
print("各手法の相対的な速度 (M1-再帰を基準として)")
print("="*110)
for idx, row in df.iterrows():
n = row['n']
base = row['method1_recursive_raw']
print(f"n={n:2d}: M1-再帰=1.00x M1-stack={row['method1_stack_raw']/base:.2f}x "
f"M2-再帰={row['method2_recursive_raw']/base:.2f}x M2-stack={row['method2_stack_raw']/base:.2f}x "
f"M2-BT={row['method2_backtrack_raw']/base:.2f}x "
f"M3-再帰={row['method3_recursive_raw']/base:.2f}x M3-stack={row['method3_stack_raw']/base:.2f}x")
return df
# ベンチマーク実行
df = benchmark()
Testing n=1...
Testing n=2...
Testing n=3...
Testing n=4...
Testing n=5...
Testing n=6...
Testing n=7...
Testing n=8...
Testing n=9...
Testing n=10...
==============================================================================================================
実行時間の比較 (10回実行の平均)
M1=method1(str+str), M2=method2(list+list), M3=method3(pair), BT=backtrack
==============================================================================================================
n M1-再帰 M1-stack M2-再帰 M2-stack M2-BT M3-再帰 M3-stack
1 0.001ms 0.001ms 0.001ms 0.001ms 0.001ms 0.002ms 0.001ms
2 0.002ms 0.002ms 0.002ms 0.002ms 0.002ms 0.003ms 0.003ms
3 0.003ms 0.004ms 0.005ms 0.006ms 0.004ms 0.008ms 0.008ms
4 0.011ms 0.012ms 0.024ms 0.016ms 0.009ms 0.021ms 0.023ms
5 0.030ms 0.038ms 0.044ms 0.051ms 0.031ms 0.066ms 0.086ms
6 0.103ms 0.121ms 0.139ms 0.177ms 0.090ms 0.228ms 0.276ms
7 0.343ms 0.403ms 0.472ms 0.548ms 0.308ms 0.780ms 0.873ms
8 1.225ms 1.322ms 1.588ms 1.835ms 0.987ms 2.684ms 2.853ms
9 3.724ms 4.459ms 5.592ms 6.307ms 3.409ms 9.924ms 10.484ms
10 13.304ms 15.498ms 20.156ms 22.385ms 12.327ms 36.442ms 37.757ms
==============================================================================================================
各手法の相対的な速度 (M1-再帰を基準として)
==============================================================================================================
n= 1: M1-再帰=1.00x M1-stack=0.81x M2-再帰=0.99x M2-stack=0.83x M2-BT=0.87x M3-再帰=1.76x M3-stack=1.09x
n= 2: M1-再帰=1.00x M1-stack=1.09x M2-再帰=1.36x M2-stack=1.39x M2-BT=1.01x M3-再帰=1.83x M3-stack=2.19x
n= 3: M1-再帰=1.00x M1-stack=1.26x M2-再帰=1.43x M2-stack=1.69x M2-BT=1.18x M3-再帰=2.36x M3-stack=2.32x
n= 4: M1-再帰=1.00x M1-stack=1.02x M2-再帰=2.16x M2-stack=1.46x M2-BT=0.80x M3-再帰=1.84x M3-stack=2.03x
n= 5: M1-再帰=1.00x M1-stack=1.24x M2-再帰=1.46x M2-stack=1.68x M2-BT=1.02x M3-再帰=2.19x M3-stack=2.82x
n= 6: M1-再帰=1.00x M1-stack=1.18x M2-再帰=1.35x M2-stack=1.72x M2-BT=0.87x M3-再帰=2.22x M3-stack=2.69x
n= 7: M1-再帰=1.00x M1-stack=1.17x M2-再帰=1.38x M2-stack=1.60x M2-BT=0.90x M3-再帰=2.27x M3-stack=2.54x
n= 8: M1-再帰=1.00x M1-stack=1.08x M2-再帰=1.30x M2-stack=1.50x M2-BT=0.81x M3-再帰=2.19x M3-stack=2.33x
n= 9: M1-再帰=1.00x M1-stack=1.20x M2-再帰=1.50x M2-stack=1.69x M2-BT=0.92x M3-再帰=2.66x M3-stack=2.82x
n=10: M1-再帰=1.00x M1-stack=1.16x M2-再帰=1.52x M2-stack=1.68x M2-BT=0.93x M3-再帰=2.74x M3-stack=2.84x
oda-sanの最初のコメント:
あ、話として3つくらいあります。
たしかに文字列は再構築されるんですが、path + ["("] も再構築されています。なので、やるならば、[path, "("] という風にペアにして渡すといいでしょう。ペアはオブジェクトへのポインタの組なので全体の再構築がされません。
計算量が不利になるか怪しいと思います。 証明までの水準では考えられていません。カタラン数を生成する木の中間ノードの各層の数なんですが、ballot numbers などといわれるものの和で表せます。厳密な計算は大変そうですが、最後の層から少し戻ると幾何級数的に減っていきます。最終層から a 層戻ったときの減り方の極限は (a/2+1)^2 / 2^a (奇数の場合は、(a^2-1) / 4 / 2^a) なので、最後の数層のコピー以外はほとんど効かないんですね。 どちらにしても最後に全文字列を生成しているので、悪くなったとしてもせいぜい数倍でしょう。
文字列のコピーは速いです。100倍くらい。
実際に計測してみましょう。
これの3点目について、補足で、
上で書いている「文字列のコピーは速い。100倍くらい。」というのは、Python インタープリターが通常100倍くらい遅いという制限がついているのが、文字列のコピーはネイティブなコードで動くということです。また、連続したメモリーブロックのコピーになり、ループアンローリングや SIMD など様々なテクニックが適用可能なので速いです。
と教えていただきました。これを私向けにさらに深掘りして解説してください。
🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠🧠
oda-sanのコメントを深掘りして解説しますね。いくつかの層に分けて説明します。
1. Pythonインタープリターが「通常100倍くらい遅い」という意味
Pythonのコードを実行するとき、インタープリターは以下のようなオーバーヘッドを持っています:
- 動的型チェック: 変数の型を毎回確認する必要がある
- バイトコードの解釈: Pythonコードは一度バイトコードに変換され、それを1命令ずつ解釈して実行
- リファレンスカウンティング: オブジェクトの参照数を管理するための処理
- 関数呼び出しのオーバーヘッド: Pythonの関数呼び出しは重い
例えば、こんな単純なループ:
total = 0
for i in range(1000000):
total += i
これをPythonで実行すると、各ステップで型チェック、インクリメント、加算、代入などすべてがPythonのオーバーヘッドを伴います。一方、C言語で書けば機械語にコンパイルされて直接CPUで実行されるので、数十〜100倍速くなります。
2. 「ネイティブなコード」で動くとは
Pythonの文字列操作(連結、コピーなど)は、C言語で実装されています。つまり:
s = "hello" + "world" # この + 演算は内部でC言語の関数が呼ばれる
この処理フローは:
- Python側で
+演算を検出 - 文字列型専用のC言語関数(例:
PyUnicode_Concat)を呼び出し - C言語のコードが直接実行される(Pythonのバイトコード解釈を経由しない)
- 結果をPythonオブジェクトとして返す
つまり、重い処理の本体はPythonインタープリターを迂回して、コンパイル済みの高速なコードで実行されるわけです。
3. 「連続したメモリーブロックのコピー」の利点
文字列は連続したメモリー領域に文字が並んでいます:
文字列 "hello" のメモリー配置:
[h][e][l][l][o] ← 連続している
一方、Pythonのリスト ["h", "e", "l", "l", "o"] は:
[ptr1][ptr2][ptr3][ptr4][ptr5] ← ポインタの配列
↓ ↓ ↓ ↓ ↓
[h] [e] [l] [l] [o] ← 実際のオブジェクトはバラバラの場所
連続メモリーのコピーは:
- キャッシュ効率が高い: CPUのキャッシュが効きやすい
- 予測可能: CPUのプリフェッチ(先読み)が機能する
- 最適化しやすい: 以下の技術が使える
4. ループアンローリング (Loop Unrolling)
通常のコピーループ:
for (int i = 0; i < len; i++) {
dest[i] = src[i]; // 1バイトずつコピー
}
ループアンローリング後:
for (int i = 0; i < len; i += 4) {
dest[i] = src[i];
dest[i+1] = src[i+1];
dest[i+2] = src[i+2];
dest[i+3] = src[i+3]; // 4バイトまとめてコピー
}
これにより:
- ループ制御のオーバーヘッドが1/4に
- CPUのパイプラインがより効率的に動作
実際には、memcpy などの関数はもっと賢く、8バイト、16バイト、さらには64バイト単位でコピーします。
5. SIMD (Single Instruction, Multiple Data)
現代のCPUには、1命令で複数のデータを同時処理する機能があります:
通常の命令:
add a, b → 1つの加算
SIMD命令 (例: SSE, AVX):
add [a1,a2,a3,a4], [b1,b2,b3,b4] → 4つの加算を同時に実行
文字列コピーで言えば:
// 通常: 1バイトずつコピー
dest[0] = src[0];
dest[1] = src[1];
// ...
// SIMD: 128ビット(16バイト)を1命令でコピー
__m128i chunk = _mm_loadu_si128(src);
_mm_storeu_si128(dest, chunk);
これにより、理論上は16倍速くなります。
6. なぜリストのコピーはこれらの恩恵を受けにくいのか
path + ["("] # リストの連結
これは:
- 新しいリスト用のメモリーを確保
- 元のリストの各要素(ポインタ)をコピー
- 各要素の参照カウントをインクリメント(これがPythonコード経由)
- 新しい要素
"("を追加
特に3番目が曲者で、各要素について:
# 内部的に各要素に対してこんな処理が
Py_INCREF(element) # 参照カウント+1(関数呼び出しオーバーヘッドあり)
これはオブジェクトごとに行う必要があり、SIMDで一括処理できません。
7. ベンチマーク結果との関連
結果を見ると:
n=10: M1-再帰=1.00x M2-BT=0.93x M2-再帰=1.52x M3-再帰=2.74x
- M1-再帰 (文字列結合): 文字列コピーの恩恵を受けて速い
- M2-BT (バックトラック): リストをコピーせず、append/popのみなので同等に速い
- M2-再帰 (リスト連結): リストのコピーが頻繁に発生して遅い
- M3-再帰 (ペア構築): リストのネストが深くなり、最後の展開でオーバーヘッド
重要な洞察: oda-sanの「文字列のコピーは速い」という指摘は正しく、実際M1とM2-BTがほぼ同等の速度なのは、どちらもPythonレベルでの頻繁なコピーを避けているからです。
まとめ
文字列のコピーが速い理由:
- C言語実装: Pythonインタープリターのオーバーヘッドを回避
- 連続メモリー: キャッシュ効率が高い
- ループアンローリング: 複数バイトを一度に処理
- SIMD: 1命令で16バイト以上を同時コピー
- 参照カウント不要: 文字列は不変なので、コピー時に各文字の参照カウントを触る必要がない
一方、リストのコピーは:
- 各要素の参照カウント操作が必要
- ポインタの配列なのでメモリーが連続していない
- これらの最適化が適用しにくい
だから、M2-BTのようにリストをコピーせずappend/popでバックトラックする方法が、文字列結合と同等の速度を実現できているわけです!